Evolutionary Image Registration in Craniofacial Superimposition: Modeling and Incorporating Expert Knowledge

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9868)

Abstract

Craniofacial superimposition involves the process of overlaying a skull with a number of ante-mortem images of an individual and the analysis of their morphological correspondence. This research focused on the skull-face overlay stage with the aim of modeling the expert knowledge that is related to the existing anthropometric differences among landmarks and incorporating it into this stage. Consequently, we have moved from a single-objective optimization problem to a multiobjective optimization one aimed to reduce the distances between pairs of landmarks from each group independently. To tackle it, two classic approaches from the area of multicriteria decision making were used: weighted sum and lexicographical order. The results, which were obtained over a Ground Truth dataset, are promising in those cases where the forensic expert has located a large number of landmarks, and worse results than the state of the art method in cases with few landmarks.

References

  1. 1.
    Yoshino, M.: Craniofacial superimposition. In: Wilkinson, C., Rynn, C. (eds.) Craniofacial Identification, pp. 238–253. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  2. 2.
    Damas, S., Cordón, O., Ibáñez, O., Santamaría, J., Alemán, I., Botella, M.: Forensic identification by computer-aided craniofacial superimposition: a survey. ACM Comput. Surv. 43, 27 (2011)CrossRefGoogle Scholar
  3. 3.
    Damas, S., Wilkinson, C., Kahana, T., Veselovskaya, E., Abramov, A., Jankauskas, R., Jayaprakash, P.T., Ruiz, E., Navarro, F., Huete, M.I., Cunha, E., Cavalli, F., Clement, J., Lestón, P., Molinero, F., Briers, T., Viegas, F., Imaizumi, K., Humpire, D., Ibáñez, O.: Study on the performance of different craniofacial superimposition approaches (II): best practices proposal. Forensic Sci. Int. 257, 504–508 (2015)CrossRefGoogle Scholar
  4. 4.
    Zitovà, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)CrossRefGoogle Scholar
  5. 5.
    Damas, S., Cordón, O., Santamaría, J.: Medical image registration using evolutionary computation: an experimental study. IEEE Comput. Intell. Mag. 6, 26–42 (2011)CrossRefGoogle Scholar
  6. 6.
    Chankong, V., Haimes, Y.: Multiobjective Decision Making Theory and Methodology. North-Holland, Amsterdam (1983)MATHGoogle Scholar
  7. 7.
    Campomanes-Alvarez, B., Ibanez, O., Campomanes-Alvarez, C., Damas, S., Cordon, O.: Modeling facial soft tissue thickness for automatic skull-face overlay. IEEE Trans. Inf. Forensics Secur. PP(99), 1 (2015)Google Scholar
  8. 8.
    Ibáñez, O., Cavalli, F., Campomanes-Álvarez, B.R., Campomanes-Álvarez, C., Valsecchi, A., Huete, M.I.: Ground truth data generation for skull-face overlay. Int. J. Leg. Med. 129, 569–581 (2015)CrossRefGoogle Scholar
  9. 9.
    Huete, M.I., Ibáñez, O., Wilkinson, C., Kahana, T.: Past, present, and future of craniofacial superimposition: literature and international surveys. Leg. Med. 17(4), 267–278 (2015)CrossRefGoogle Scholar
  10. 10.
    Ghosh, A.K., Sinha, P.: An economised craniofacial identification system. Forensic Sci. Int. 117, 109–119 (2001)CrossRefGoogle Scholar
  11. 11.
    Nickerson, B.A., Fitzhorn, P.A., Koch, S.K., Charney, M.: A methodology for near-optimal computational superimposition of two-dimensional digital facial photographs and three-dimensional cranial surface meshes. J. Forensic Sci. 36, 480–500 (1991)CrossRefGoogle Scholar
  12. 12.
    Ibáñez, O., Ballerini, L., Cordón, O., Damas, S., Santamaría, J.: An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification. Inf. Sci. 79, 3998–4028 (2009)CrossRefGoogle Scholar
  13. 13.
    Ibáñez, O., Cordón, O., Damas, S., Santamaría, J.: Modeling the skull-face overlay uncertainty using fuzzy sets. IEEE Trans. Fuzzy Syst. 16, 946–959 (2011)Google Scholar
  14. 14.
    Ibáñez, O., Cordón, O., Damas, S.: A cooperative coevolutionary approach dealing with the skull face overlay uncertainty in forensic identification by craniofacial superimposition. Soft Comput. 18, 797–808 (2012)CrossRefGoogle Scholar
  15. 15.
    Faugeras, O.: Three-Dimensional Computer Vision. A Geometric Viewpoint, 1st edn. The MIT Press, Cambridge (1993)Google Scholar
  16. 16.
    Cummaudo, M., Guerzoni, M., Marasciuolo, L., Gibelli, D., Cigada, A., Obertová, Z., Ratnayake, M., Poppa, P., Gabriel, P., Ritz-Timme, S., Cattaneo, C.: Pitfalls at the root of facial assessment on photographs: a quantitative study of accuracy in positioning facial landmarks. Int J. Leg. Med. 127, 699–706 (2013)CrossRefGoogle Scholar
  17. 17.
    Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology, 1st edn. Cambridge University Press, New York (1991)MATHGoogle Scholar
  18. 18.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departamento de Ciencias de la Computación e Inteligencia ArtificialCITIC-UGR (Centro de Investigación en Tecnologías de la Información y las Comunicaciones)GranadaSpain
  2. 2.Departamento de Ciencias de la Computación e Inteligencia ArtificialUniversity of GranadaGranadaSpain

Personalised recommendations