Advertisement

Practical Round-Optimal Blind Signatures in the Standard Model from Weaker Assumptions

  • Georg Fuchsbauer
  • Christian Hanser
  • Chethan Kamath
  • Daniel Slamanig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-model construction of efficient round-optimal blind signatures that does not require complexity leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness under adversarially chosen keys is proven under an interactive variant of the DDH assumption.

We propose a variant of their scheme whose blindness can be proven under a non-interactive assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed for the FHS scheme.

Keywords

Signature Scheme Random Oracle Blind Signature Blind Signature Scheme Common Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 262–279. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-preserving signatures: generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Structure-preserving signatures from Type II pairings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 390–407. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010). http://eprint.iacr.org/2010/133
  9. 9.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.: Strongly-optimal structure preserving signatures from Type II pairings: synthesis and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Blazy, O., Pointcheval, D., Vergnaud, D.: Compact round-optimal partially-blind signatures. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 95–112. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Blazy, O., Pointcheval, D., Vergnaud, D.: Round-optimal privacy-preserving protocols with smooth projective hash functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 94–111. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings - the role of \(\psi \) revisited. Discret. Appl. Math. 159(13), 1311–1322 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York (1982)Google Scholar
  19. 19.
    Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO 1983, p. 153. Plenum Press, New York (1984)CrossRefGoogle Scholar
  20. 20.
    Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320 (2009). http://eprint.iacr.org/2009/320
  25. 25.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. Cryptology ePrint Archive, Report 2014/944 (2014). http://eprint.iacr.org/2014/944
  26. 26.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  27. 27.
    Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  28. 28.
    Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Ghadafi, E.: Short structure-preserving signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 305–321. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  30. 30.
    Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common reference string model. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 274–289. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014)Google Scholar
  33. 33.
    Hanzlik, L., Kluczniak, K.: A short paper on blind signatures from knowledge assumptions. FC 2016. LNCS. Springer, Heidelberg (2016)Google Scholar
  34. 34.
    Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 66–83. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Joux, A.: A one round protocol for tripartite Diffie-hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000). http://dx.doi.org/10.1007/10722028_23 CrossRefGoogle Scholar
  36. 36.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  37. 37.
    Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  38. 38.
    Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: 35th ACM STOC, pp. 683–692. ACM Press, San Diego, 9–11 June 2003Google Scholar
  39. 39.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  40. 40.
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  41. 41.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRefzbMATHGoogle Scholar
  42. 42.
    Schröder, D., Unruh, D.: Security of blind signatures revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 662–679. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  43. 43.
    Seo, J.H., Cheon, J.H.: Beyond the limitation of prime-order bilinear groups, and round optimal blind signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 133–150. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Georg Fuchsbauer
    • 1
  • Christian Hanser
    • 2
  • Chethan Kamath
    • 3
  • Daniel Slamanig
    • 2
  1. 1.Inria, ENS, CNRS and PSL Research UniversityParisFrance
  2. 2.IAIKGraz University of TechnologyGrazAustria
  3. 3.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations