Advertisement

Verifiable Pattern Matching on Outsourced Texts

  • Dario Catalano
  • Mario Di Raimondo
  • Simone Faro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9841)

Abstract

In this paper we consider a scenario where a user wants to outsource her documents to the cloud, so that she can later reliably delegate (to the cloud) pattern matching operations on these documents. We propose an efficient solution to this problem that relies on the homomorphic MAC for polynomials proposed by Catalano and Fiore in [14]. Our main contribution are new methods to express pattern matching operations (both in their exact and approximate variants) as low degree polynomials, i.e. polynomials whose degree solely depends on the size of the pattern. To better assess the practicality of our schemes, we propose a concrete implementation that further optimizes the efficiency of the homomorphic MAC from [14]. Our implementation shows that the proposed protocols are extremely efficient for the client, while remaining feasible at server side.

Keywords

Fast Fourier Transform Pattern Match Finite State Automaton Arithmetic Circuit Pattern Match Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported in part by a FIR 2014 grant by the University of Catania. Thanks to Nuno Tiago Ferreira de Carvalho for his Homomorphic MACs library (Available at https://bitbucket.org/ntfc/cf-homomorphic-mac/).

References

  1. 1.
    Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and Privacy, pp. 271–286. IEEE Computer Society Press (2015)Google Scholar
  8. 8.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, pp. 863–874. ACM Press, November 2013Google Scholar
  9. 9.
    Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Commun. ACM 35(10), 74–82 (1992)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Catalano, D.: Homomorphic signatures and message authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 680–699. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-way functions: constructions and applications. Theoret. Comput. Sci. 592, 143–165 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press, Oxford (1994)zbMATHGoogle Scholar
  23. 23.
    Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW (1993)Google Scholar
  24. 24.
    Faro, S., Lecroq, T.: The exact online string matching problem: a review of the most recent results. ACM Comput. Surv. 45(2), 13 (2013)CrossRefzbMATHGoogle Scholar
  25. 25.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: 47th ACM STOC, pp. 469–477. ACM Press (2015)Google Scholar
  30. 30.
    Granlund, T., GMP Development Team.: GNU MP: The GNU Multiple Precision Arithmetic Library, 6.1.0 edn (2016)Google Scholar
  31. 31.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Kärkkäinen, J., Chae Na, J.: Faster filters for approximate string matching. In: Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM (2007)Google Scholar
  33. 33.
    Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Koch, W., Libgcrypt Development Team.: Libgcrypt, 1.7.0 edn (2016)Google Scholar
  35. 35.
    Landau, G.M., Vishkin, U.: Efficient string matching with k mismatches. Theor. Comput. Sci. 43, 239–249 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  37. 37.
    Papadopoulos, D., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Practical authenticated pattern matching with optimal proof size. Proc. VLDB Endowment 8(7), 750–761 (2015)CrossRefGoogle Scholar
  38. 38.
    Shoup, V.: NTL: A Library for doing Number Theory, 9.7.1 edn (2016)Google Scholar
  39. 39.
    Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dario Catalano
    • 1
  • Mario Di Raimondo
    • 1
  • Simone Faro
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations