Advertisement

Nutritional Strategies and Sex Hormone Interactions in Women

  • Nancy J. RehrerEmail author
  • Rebecca T. McLay-Cooke
  • Stacy T. Sims
Chapter

Abstract

A number of nutrients, foods and supplements have the potential to augment health, exercise performance and/or recovery, particularly in women, due to fluctuation of sex hormones, or reductions thereof. Some of these for which significant amounts of research have provided evidence include:

CHO loading can overcome lower resting muscle glycogen in the follicular phase but an increase in total energy intake may be required.

Pre-exercise feeding and/or CHO ingestion can negate effects of the oestrogen-induced reduction in gluconeogenesis during endurance exercise.

Increased protein during recovery may help offset the increase in protein catabolism in the luteal phase.

Special attention to not overhydrate and replace sodium losses in the luteal phase of the menstrual cycle may help reduce the increased risk of hyponatraemia that is due to differences in fluid and electrolyte handing and thirst in this phase.

Supplementing with dietary sources of antioxidants may be prudent in those with amenorrhoea or in menopause and, thus, low oestrogen, as oestrogen enhances antioxidant capacity. However, this may not fully compensate for lack of oestrogen.

Fish oil (omega-3 fatty acid source) may aid in inflammatory disorders such as dysmenorrhoea and those associated with menopause.

Vitamin D and calcium influence fertility, possibly dysmenorrhoea, as well as bone health; however, supplementation cannot fully compensate for lack of oestrogen.

Branched chain amino acid oxidation may be greater when oestrogen is low; this may have dietary implications for those with amenorrhoea or in menopause, particularly when training regularly and or on low energy diets.

Keywords

Females Dietary supplements Sex hormones Menstrual cycle Diet Nutrition Oestrogen Reactive oxygen species Antioxidants 

Notes

Acknowledgements

The authors would like to thank Dr James D. Cotter for his insightful suggestions.

References

  1. Akova B, Surmen-Gur E, Gur H, Dirican M, Sarandol E, Kucukoglu S. Exercise-induced oxidative stress and muscle performance in healthy women: role of vitamin E supplementation and endogenous oestradiol. Eur J Appl Physiol. 2001;84(1-2):141–7.PubMedCrossRefGoogle Scholar
  2. Almond CS, Shin AY, Fortescue EB, Mannix RC, Wypij D, Binstadt BA, et al. Hyponatremia among runners in the Boston Marathon. N Engl J Med. 2005;352(15):1550–6.PubMedCrossRefGoogle Scholar
  3. Ayres S, Baer J, Ravi Subbiah MT. Exercised-induced increase in lipid peroxidation parameters in amenorrheic female athletes. Fertil Steril. 1998;69(1):73–7. doi: 10.1016/S0015-0282(97)00428-7. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  4. Baer J, Taper L, Gwazdauskas F, Walberg J, Novascone M, Ritchey S, et al. Diet, hormonal, and metabolic factors affecting bone mineral density in adolescent amenorrheic and eumenorrheic female runners. J Sports Med Phys Fitness. 1992;32(1):51–8.PubMedGoogle Scholar
  5. Baeza I, De Castro NM, Arranz L, Fdez-Tresguerres J, De la Fuente M. Ovariectomy causes immunosenescence and oxi-inflamm-ageing in peritoneal leukocytes of aged female mice similar to that in aged males. Biogerontology. 2011;12(3):227–38. doi: 10.1007/s10522-010-9317-0. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  6. Bailey S, Zacher C, Mittleman K. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol. 2000;88:690–7.PubMedGoogle Scholar
  7. Berger NJA, Campbell IT, Wlkerson DP, Jones AM. Influence of acute plasma volume expansion on VO2 kineitics, VO2peak, and performance during high-intensity cycle exercise. J Appl Physiol. 2006;101:707–14.PubMedCrossRefGoogle Scholar
  8. Bisson DL, Dunster GD, O’Hare JP, Hampton D, Penney MD. Renal sodium retention does not occur during the luteal phase of the menstrual cycle in normal women. Br J Obstet Gynaecol. 1992;99:247–52.PubMedCrossRefGoogle Scholar
  9. Blakesmith SJ, Lyons-Wall PM, George C, Joannou GE, Petocz P, Samman S. Effects of supplementation with purified red clover (Trifolium pratense) isoflavones on plasma lipids and insulin resistance in healthy premenopausal women. Br J Nutr. 2003;89(4):467–74.PubMedCrossRefGoogle Scholar
  10. Broad E, Cox G. What is the optimal composition of an athlete’s diet? Eur J Sport Sci. 2008;8(2):57–65.CrossRefGoogle Scholar
  11. Burke L. Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sports Med. 2015;45 Suppl 1:S33–49.PubMedCrossRefGoogle Scholar
  12. Burke L, Hawley J, Schabort E, St Clair Gibson A, Mujika I, Noakes T. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000;88:1284–90.PubMedGoogle Scholar
  13. Campbell S, Febbraio M. Effect of ovarian hormones on mitochondrial enzyme activity in fat oxidation pathway of skeletal muscle. Am J Physiol Endocrinol Metab. 2001;281:E803–8.PubMedGoogle Scholar
  14. Campbell S, Febbraio M. Effect of ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol Endocrinol Metab. 2002;282:E1139–46.PubMedCrossRefGoogle Scholar
  15. Campbell S, Angus D, Febbraio M. Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am J Physiol Endocrinol Metab. 2001;281:E817–25.PubMedGoogle Scholar
  16. Campbell MJ, Woodside JV, Honour JW, Morton MS, Leathem AJ. Effect of red clover-derived isoflavone supplementation on insulin-like growth factor, lipid and antioxidant status in healthy female volunteers: a pilot study. Eur J Clin Nutr. 2004;58(1):173–9.PubMedCrossRefGoogle Scholar
  17. Casazza G, Jacobs K, Suh S-H, Miller B, Horning M, Brooks G. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilisation during exercise. J Appl Physiol. 2004;97:302–9.PubMedCrossRefGoogle Scholar
  18. Cassidy A, Bingham S, Setchell KD. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr. 1994;60(3):333–40.PubMedGoogle Scholar
  19. Cederroth CR, Nef S. Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol. 2009;304(1–2):30–42. doi: 10.1016/j.mce.2009.02.027. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  20. Cermak N, van Loon L. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43:1139–55.PubMedCrossRefGoogle Scholar
  21. Charkoudian N, Johnson JM. Modification of active cutaneous vasodilation by oral contraceptive hormones. J Appl Physiol. 1997;83(6):2012–8.PubMedGoogle Scholar
  22. Charkoudian N, Johnson JM. Reflex control of cutaneous vasoconstrictor system is reset by exogenous female reproductive hormones. J Appl Physiol. 1999;87(1):381–5.PubMedGoogle Scholar
  23. Charkoudian N, Stachenfeld NS. Reproductive hormone influences on thermoregulation in women, Comprehensive Physiology. Hoboken: Wiley; 2011.Google Scholar
  24. Charkoudian N, Stephens DP, Pirkle KC, Kosiba WA, Johnson JM. Influence of female reproductive hormones on local thermal control of skin blood flow. J Appl Physiol. 1999;87(5):1719–23.PubMedGoogle Scholar
  25. Chung S-C, Goldfarb AH, Jamurtas AZ, Hegde SS, Lee J. Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women. Med Sci Sports Exerc. 1999;31(3):409–13.PubMedCrossRefGoogle Scholar
  26. Cornelli U, Belcaro G, Cesarone MR, Finco A. Analysis of oxidative stress during the menstrual cycle. Reprod Biol Endocrinol. 2013;11:74. doi: 10.1186/1477-7827-11-74. http://dx.doi.org.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Correia-Oliveira C, Bertuzzi R, Dal’Molin Kiss M, Lima-Silva A. Strategies of dietary carbohydrate manipulation and their effects of performance in cycling time trials. Sports Med. 2013;43:707–19.PubMedCrossRefGoogle Scholar
  28. D’Eon T, Sharoff C, Chipkin S, Grow D, Ruby B, Braun B. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am J Physiol Endocrinol Metab. 2002;283:E1046–55.PubMedCrossRefGoogle Scholar
  29. Deutch B, Jørgensen EB, Hansen JC. Menstrual discomfort in Danish women reduced by dietary supplements of omega-3 PUFA and B 12 (fish oil or seal oil capsules). Nutr Res. 2000;20(5):621–31.CrossRefGoogle Scholar
  30. Devries M, Hamadeh M, Phillips S, Tarnopolsky M. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1120–8.PubMedCrossRefGoogle Scholar
  31. Drinkwater BL, Nilson K, Ott S, Chesnut CH. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA. 1986;256(3):380–2.PubMedCrossRefGoogle Scholar
  32. Druyan A, Makranz C, Moran D, Yanovich R, Epstein Y, Heled Y. Heat tolerance in women: reconsidering the criteria. Aviat Space Environ Med. 2012;83(1):58–60. doi: 10.3357/ASEM.3130.2012.PubMedCrossRefGoogle Scholar
  33. Eijsvogels TMH, Scholten RR, van Duijnhoven NTL, Thijssen DHJ, Hopman MTE. Sex difference in fluid balance responses during prolonged exercise. Scand J Med Sci Sports. 2013;23(2):198–206. doi: 10.1111/j.1600-0838.2011.01371.x.PubMedCrossRefGoogle Scholar
  34. Foran SE, Flood JG, Lewandrowski KB. Measurement of mercury levels in concentrated over-the-counter fish oil preparations: is fish oil healthier than fish? Arch Pathol Lab Med. 2003;127(12):1603–5.PubMedGoogle Scholar
  35. Fortney SM, Wenger CB, Bove JR, Nadel ER. Effect of hyperosmolality on control of blood flow and sweating. J Appl Physiol. 1984;57:1688–95.PubMedGoogle Scholar
  36. Frey MAB, Riddle J, Charles JB, Bungo MW. Blood and urine responses to ingesting fluids of various salt and glucose-concentrations. J Clin Pharmacol. 1991;31(10):880–7.PubMedCrossRefGoogle Scholar
  37. Gagnon D, Kenny GP. Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol. 2011;589(24):6205–17. doi: 10.1113/jphysiol.2011.219220.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gagnon D, Kenny GP. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol. 2012;113(5):746–57. doi: 10.1152/japplphysiol.00637.2012.PubMedCrossRefGoogle Scholar
  39. Gagnon D, Jay O, Lemire B, Kenny GP. Sex-related differences in evaporative heat loss: the importance of metabolic heat production. Eur J Appl Physiol. 2008;104(5):821–9. doi: 10.1007/s00421-008-0837-0.PubMedCrossRefGoogle Scholar
  40. Greenleaf JE, Looft-Wilson R, Wisherd JL, McKenzie MA, Jensen CD, Whittam JH. Pre-Exercise hypervolemia and cycle ergometer endurance in men. Biol Sport. 1997;14:103–14.PubMedGoogle Scholar
  41. Greenleaf JE, Jackson CG, Geelen G, Keil LC, Hinghofer-Szalkay H, Whittam JH. Plasma volume expansion with oral fluids in hypohydrated men at rest and during exercise. Aviat Space Environ Med. 1998a;69(9):837–44.PubMedGoogle Scholar
  42. Greenleaf JE, Looft-Wilson R, Wisherd JL, Jackson CG, Fung PP, Ertl AC, et al. Hypervolemia in men from fluid ingestion at rest and during exercise. Aviat Space Environ Med. 1998b;69(4):374–86.PubMedGoogle Scholar
  43. Hackney, AC. Effects of the menstrual cycle on resting muscle glycogen content. Horm Metab Res. 1990;22:647.PubMedCrossRefGoogle Scholar
  44. Hamadeh M, Devries M, Tarnopolsky M. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab. 2005;90(6):3592–9.PubMedCrossRefGoogle Scholar
  45. Hansen P, McCarthy T, Pasia E, Spina R, Gulve E. Effects of ovariectomy and exercise training on muscle GLUT-4 content and glucose metabolism in rats. J Appl Physiol. 1996;80(5):1605–11.PubMedGoogle Scholar
  46. Hashimoto H, Ishijima T, Hayashida H, Suzuki K, Higuchi M. Menstrual cycle phase and carbohydrate ingestion alter immune response following endurance exercise and high intensity time trial performance test under hot conditions. J Int Soc Sports Nutr. 2014;11:39.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hausswirth C, Le Meur Y. Physiological and nutritional aspects of post-exercise recovery: specific recommendations for female athletes. Sports Med. 2011;41(10):861–82. doi: 10.2165/11593180-000000000-00000. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  48. Hawley J, Palmer G, Noakes T. Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilisation during a 1-h cycling performance. Eur J Appl Physiol. 1997;75:407–12.CrossRefGoogle Scholar
  49. Hew-Butler T, Rosner MH, Fowkes-Godek S, Dugas JP, Hoffman MD, Lewis DP, et al. Statement of the third international exercise-associated hyponatremia consensus development conference, Carlsbad, California, 2015. Clin J Sport Med. 2015;25(4):303–20.PubMedCrossRefGoogle Scholar
  50. Hightower JM, Moore D. Mercury levels in high-end consumers of fish. Environ Health Perspect. 2003;111(4):604.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hiroshoren N, Tzoran I, Makrienko I, Edoute Y, Plawner MM, Itskovitz-Eldor J, Jacob G. Menstrual cycle effects on the neurohumoral and autonomic nervous systems regulating the cardiovascular system. J Clin Endocrinol Metab. 2002;87(4):1569–75.CrossRefGoogle Scholar
  52. Houghton BL, Holowatz LA, Minson CT. Influence of progestin bioactivity on cutaneous vascular responses to passive heating. Med Sci Sports Exerc. 2005;37(1):45–51. discussion 2.PubMedCrossRefGoogle Scholar
  53. Houltham S, Rowlands D. A snapshot of nitrogen balance in endurance-trained women. Appl Physiol Nutr Metab. 2014;39:219–25.PubMedCrossRefGoogle Scholar
  54. Howatson G, van Someren K. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483–503.PubMedCrossRefGoogle Scholar
  55. Ishunina TA, Swaab DF. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus; size changes in relation to age and sex. J Clin Endocrinol Metab. 1999;84(12):4637–44.PubMedCrossRefGoogle Scholar
  56. James A, Lorraine M, Cullen D, Goodman C, Dawson B, Palmer T, et al. Muscle glycogen supercompensation: absence of a gender-related difference. Eur J Appl Physiol. 2001;85:533–8.PubMedCrossRefGoogle Scholar
  57. Jeukendrup A. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sport Sci. 2011;29 Suppl 1:S91–9.CrossRefGoogle Scholar
  58. Joo MH, Maehata E, Adachi T, Ishida A, Murai F, Mesaki N. The relationship between exercise-induced oxidative stress and the menstrual cycle. Eur J Appl Physiol. 2004;93(1-2):82–6.PubMedCrossRefGoogle Scholar
  59. Jukic AM, Steiner AZ, Baird DD. Association between serum 25-hydroxyvitamin D and ovarian reserve in premenopausal women. Menopause. 2015;22(3):312–6. doi: 10.1097/GME.0000000000000312. http://dx.doi.org.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kang AK, Duncan JA, Cattran DC, Floras JS, Lai V, Scholey JW, Miller JA. Effect of oral contraceptives on the renin angiotensin system and renal function. Am J Physiol Regul Integr Comp Physiol. 2001;280:R807–13.PubMedGoogle Scholar
  61. Kawahata A. Sex differences in sweating. In: Ito S, Ogata H, Yoshimura H, editors. Essential problems in climatic physiology. Kyoto, Japan: Nankodo Publ; 1960.Google Scholar
  62. Keane K, Salicki R, Goodall S, Thomas K, Howatson G. Muscle damage response in female collegiate athletes after repeated sprint activity. J Strength Cond Res. 2015;29(10):2802–7.PubMedCrossRefGoogle Scholar
  63. Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol. 1993;23(1):21–48. doi: 10.3109/10408449309104073.PubMedCrossRefGoogle Scholar
  64. Klapcinska B, Sadowska-Krepa E, Manowska B, Pilis W, Sobczak A, Danch A. Effects of a low carbohydrate diet and graded exercise during the follicular and luteal phases on the blood antioxidant status in healthy women. Eur J Appl Physiol. 2002;87(4-5):373–80.PubMedCrossRefGoogle Scholar
  65. Kobayashi R, Shimomura Y, Murakami T, Nakai N, Fujitsuka N, Otsuka M, et al. Gender difference in regulation of branched-chain amino acid catabolism. Biochem J. 1997;327(Pt 2):449–53.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kolka MA, Stephenson LA. Effect of luteal phase elevation in core temperature on forearm blood flow during exercise. J Appl Physiol. 1997a;82(4):1079–83.PubMedGoogle Scholar
  67. Kolka MA, Stephenson LA. Resetting the thermoregulatory set-point by endogenous estradiol or progesterone in women. Ann N Y Acad Sci. 1997b;813:204–6.PubMedCrossRefGoogle Scholar
  68. Kriengsinyos W, Wykes L, Goonewardene L, Ball R, Pencharz P. Phase of menstrual cycle affects lysine requirement in healthy women. Am J Physiol Endocrinol Metab. 2004;287:E489–96.PubMedCrossRefGoogle Scholar
  69. Kuipers H, Saris W, Brouns F, Keizer H, ten Bosch C. Glycogen synthesis during exercise and rest with carbohydrate feeding in males and females. Int J Sports Med. 1989;10 Suppl 1:S63–7.PubMedCrossRefGoogle Scholar
  70. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med. 1996;334(18):1156–62. doi: 10.1056/NEJM199605023341803.PubMedCrossRefGoogle Scholar
  71. Lamont L, Lemon P, Bruot B. Menstrual cycle and exercise effects on protein catabolism. Med Sci Sports Exerc. 1987;19(2):106–10.PubMedCrossRefGoogle Scholar
  72. Lariviere F, Moussalli R, Garrel D. Increased leucine flux and leucine oxidation during the luteal phase of the menstrual cycle in women. Am J Physiol Endocrinol Metab. 1994;267:E422–8.Google Scholar
  73. Latour M, Shinoda M, Lavoie J-M. Metabolic effects of physical training in ovariectomized and hyperestrogenic rats. J Appl Physiol. 2001;90:235–41.PubMedGoogle Scholar
  74. Lavoie J, Dionne N, Helie R, Brisson G. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. J Appl Physiol. 1987;62(3):1084–9.PubMedCrossRefGoogle Scholar
  75. Mack GW, Nadel ER. Body fluid balance during heat stress in humans. Comprehensive Physiology: Wiley; 2010.Google Scholar
  76. Maskarinec G, Williams AE, Inouye JS, Stanczyk FZ, Franke AA. A randomized isoflavone intervention among premenopausal women. Cancer Epidemiol Biomarkers Prev. 2002;11(2):195–201.PubMedGoogle Scholar
  77. Massafra C, Buonocore G, Gioia D, Sargentini I. Changes in the erythrocyte antioxidant enzyme system during transdermal estradiol therapy for secondary amenorrhea. Gynecol Endocrinol. 1996;10(3):155–8.PubMedCrossRefGoogle Scholar
  78. Matute M, Kalkhoff R. Sex steroid influence on hepatic gluconeogenesis and glycogen formation. Endocrinology. 1973;92:762–8.PubMedCrossRefGoogle Scholar
  79. Maughan RJ, Leiper JB, Shirreffs SM. Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat. Br J Sports Med. 1997;31(3):175–82.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maughan RJ, Shirreffs SM, Leiper JB. Errors in the estimation of hydration status from changes in body mass. J Sports Sci. 2007;25(7):797–804. doi: 10.1080/02640410600875143.PubMedCrossRefGoogle Scholar
  81. McCarty MF. Vascular nitric oxide, sex hormone replacement, and fish oil may help to prevent Alzheimer’s disease by suppressing synthesis of acute-phase cytokines. Med Hypotheses. 1999;53(5):369–74.PubMedCrossRefGoogle Scholar
  82. McLay R, Thomson C, Williams S, Rehrer N. Carbohydrate loading and female endurance athletes: effects of menstrual-cycle phase. Int J Sport Nutr Exerc Metab. 2007;17(2):189–205.PubMedCrossRefGoogle Scholar
  83. Mee JA, Gibson OR, Doust J, Maxwell NS. A comparison of males and females’ temporal patterning to short- and long-term heat acclimation. Scand J Med Sci Sports. 2015;25:250–8. doi: 10.1111/sms.12417.PubMedCrossRefGoogle Scholar
  84. Mei J, Yeung SS, Kung AW. High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab. 2001;86(11):5217–21.PubMedCrossRefGoogle Scholar
  85. Mestre-Alfaro A, Ferrer MD, Sureda A, Tauler P, Martinez E, Bibiloni MM, et al. Phytoestrogens enhance antioxidant enzymes after swimming exercise and modulate sex hormone plasma levels in female swimmers. Eur J Appl Physiol. 2011;111(9):2281–94. doi: 10.1007/s00421-011-1862-y. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  86. Michos C, Kiortsis DN, Evangelou A, Karkabounas S. Antioxidant protection during the menstrual cycle: the effects of estradiol on ascorbic-dehydroascorbic acid plasma levels and total antioxidant plasma status in eumenorrhoic women during the menstrual cycle. Acta Obstet Gynecol Scand. 2006;85(8):960–5.PubMedCrossRefGoogle Scholar
  87. Moran DS, Shapiro Y, Laor A, Izraeli S, Pandolf KB. Can gender differences during exercise-heat stress be assessed by the physiological strain index? Am J Physiol Regul Integr Comp Physiol. 1999;276(6):R1798–804.Google Scholar
  88. Moreira AC, Silva AM, Santos MS, Sardão VA. Phytoestrogens as alternative hormone replacement therapy in menopause: What is real, what is unknown. J Steroid Biochem Mol Biol. 2014;143:61–71. doi: 10.1016/j.jsbmb.2014.01.016. http://dx.doi.org.PubMedCrossRefGoogle Scholar
  89. Morrow C, Naumburg EH. Dysmenorrhea. Prim Care. 2009;36(1):19–32.PubMedCrossRefGoogle Scholar
  90. Nhan S, Anderson KE, Nagamani M, Grady JJ, Lu LJ. Effect of a soymilk supplement containing isoflavones on urinary F2 isoprostane levels in premenopausal women. Nutr Cancer. 2005;53(1):73–81.PubMedCrossRefGoogle Scholar
  91. Nicklas B, Hackney AC, Sharp R. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med. 1989;10:264–9.PubMedCrossRefGoogle Scholar
  92. Obayashi M, Shimomura Y, Nakai N, Jeoung NH, Nagasaki M, Murakami T, et al. Estrogen controls branched-chain amino acid catabolism in female rats. J Nutr. 2004;134(10):2628–33.PubMedGoogle Scholar
  93. Oian P, Tollan A, Fadnes HO, Noddeland H, Maltau JM. Transcapillary fluid dynamics during the menstrual cycle. Am J Obstet Gynecol. 1987;156(4):952–5.PubMedCrossRefGoogle Scholar
  94. O’Keeffe K, Keith R, Wilson G, Blessing D. Dietary carbohydrate intake and endurance exercise performance of trained female cyclists. Nutr Res. 1989;9:819–30.CrossRefGoogle Scholar
  95. Oosthuyse T, Bosch A. The effect of the menstrual cycle on exercise metabolism. Implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40(3):207–27.PubMedCrossRefGoogle Scholar
  96. Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol. 2010;31(4):400–19. doi: 10.1016/j.yfrne.2010.03.003. doi:http://dx.doi.org.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Paul D, Mulroy S, Horner J, Jacobs K, Lamb D. Carbohydrate-loading during the follicular phase of the menstrual cycle: effects on muscle glycogen and exercise performance. Int J Sport Nutr Exerc Metab. 2001;11:430–41.PubMedCrossRefGoogle Scholar
  98. Peternelj T-T, Coombes JS. Antioxidant supplementation during exercise training. Sports Med. 2011;41(12):1043–69.PubMedCrossRefGoogle Scholar
  99. Pitkin RM, Reynolds WA, Williams GA, Hargis GK. Calcium-regulating hormones during the menstrual cycle. J Clin Endocrinol Metab. 1978;47(3):626–32.PubMedCrossRefGoogle Scholar
  100. Rahbar N, Asgharzadeh N, Ghorbani R. Effect of omega-3 fatty acids on intensity of primary dysmenorrhea. Int J Gynaecol Obstet. 2012;117(1):45–7.PubMedCrossRefGoogle Scholar
  101. Rauch L, Rodger I, Wilson G, Belonje J, Dennis S, Noakes T, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr. 1995;5:25–36.PubMedCrossRefGoogle Scholar
  102. Rauch H, St Clair Gibson A, Lambert E, Noakes T. A signaling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39:34–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rechichi C, Dawson B, Goodman C. Athletic performance and oral contraceptive. Int J Sport Physiol Perform. 2009;4:151–62.CrossRefGoogle Scholar
  104. Reznik Dolins K, Boozer C, Stoler F, Bartels M, DeMeersman R, Contento I. Effect of variable carbohydrate intake on exercise performance in female endurance cyclists. Int J Sport Nutr Exerc Metab. 2003;13:422–35.PubMedCrossRefGoogle Scholar
  105. Rosner MH, Bennett B, Hew-Butler T, Hoffman MD. Exercise-associated hyponatremia. In: Simon EE, editor. Hyponatremia: evaluation and treatment. New York, NY: Springer New York; 2013. p. 175–92.CrossRefGoogle Scholar
  106. Rowlands D, Wadsworth D. Effect of high-protein feeding on performance and nitrogen balance in female cyclists. Med Sci Sports Exerc. 2011;43(1):44–53.PubMedCrossRefGoogle Scholar
  107. Roy B, Luttmer K, Bosman M, Tarnopolsky M. The influence of post-exercise macronutrient intake on energy balance and protein metabolism in active females participating in endurance training. Int J Sport Nutr Exerc Metab. 2002;12:172–88.PubMedCrossRefGoogle Scholar
  108. Salazar FJ, Llinas MT. Role of nitric oxide in the control of sodium excretion. News Physiol Sci. 1996;11:62–7.Google Scholar
  109. Sar M, Stumpf W. Simultaneous localization of [3 H] estradiol and neurophysin I or arginine vasopressin in hypothalamic neurons demonstrated by a combined technique of dry-mount autoradiography and immunohistochemistry. Neurosci Lett. 1980;17(1):179–84.PubMedCrossRefGoogle Scholar
  110. Sedlock D. The latest on carbohydrate loading: a practical approach. Curr Sports Med Rep. 2008;7(4):209–13.PubMedCrossRefGoogle Scholar
  111. Sherman W, Costill D, Fink W, Miller J. The effect of exercise-diet manipulation on muscle glycogen and its subsequent utilisation during performance. Int J Sports Med. 1981;2:114–8.PubMedCrossRefGoogle Scholar
  112. Shimomura Y, Obayashi M, Murakami T, Harris RA. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care. 2001;4(5):419–23.PubMedCrossRefGoogle Scholar
  113. Simpson LO. The etiopathogenesis of premenstrual syndrome as a consequence of altered blood rheology: a new hypothesis. Med Hypotheses. 1988;25(4):189–95.PubMedCrossRefGoogle Scholar
  114. Sims ST, Rehrer NJ, Bell ML, Cotter JD. Preexercise sodium loading aids fluid balance and endurance for women exercising in the heat. J Appl Physiol. 2007a;103(2):534–41. doi: 10.1152/japplphysiol.01203.2006.PubMedCrossRefGoogle Scholar
  115. Sims ST, van Vliet L, Cotter JD, Rehrer NJ. Sodium loading aids fluid balance and reduces physiological strain of trained men exercising in the heat. Med Sci Sports Exerc. 2007b;39(1):123–30. doi: 10.1249/01.mss.0000241639.97972.4a.PubMedCrossRefGoogle Scholar
  116. Sjödin B, Westing YH, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990;10(4):236–54.PubMedCrossRefGoogle Scholar
  117. Stachenfeld NS. Hormonal changes during menopause and the impact on fluid regulation. Reprod Sci. 2014;21(5):555–61. doi: 10.1177/1933719113518992.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stachenfeld NS, Keefe DL. Estrogen effects on osmotic regulation of AVP and fluid balance. Am J Physiol Endocrinol Metab. 2002;283(4):E711–21.PubMedCrossRefGoogle Scholar
  119. Stachenfeld NS, Dipietro L, Palter SF, Nadel ER. Estrogen influences osmotic secretion of AVP and body water balance in postmenopausal women. Am J Physiol Regul Integr Comp Physiol. 1998;274(1):R187–95.Google Scholar
  120. Stachenfeld NS, Silva C, Keefe DL, Kokoszka CA, Nadel ER. Effects of oral contraceptives on body fluid regulation. J Appl Physiol. 1999;87(3):1016–25.PubMedGoogle Scholar
  121. Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol. 2000;88(5):1643–9.PubMedGoogle Scholar
  122. Stachenfeld NS, Keefe DL, Palter SF. Estrogen and progesterone effects on transcapillary fluid dynamics. Am J Physiol Regul Integr Comp Physiol. 2001a;281(4):R1319–29.PubMedGoogle Scholar
  123. Stachenfeld NS, Splenser AE, Calzone WL, Taylor MP, Keefe DL. Selected Contribution: Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol. 2001b;91(4):1893–901.PubMedGoogle Scholar
  124. Stephens DP, Bennett LA, Aoki K, Kosiba WA, Charkoudian N, Johnson JM. Sympathetic nonnoradrenergic cutaneous vasoconstriction in women is associated with reproductive hormone status. Am J Physiol Heart Circ Physiol. 2002;282(1):H264–72.PubMedGoogle Scholar
  125. Stephenson LA, Kolka MA. Plasma volume during heat stress and exercise in women. Eur J Appl Physiol. 1988;57:373–81.CrossRefGoogle Scholar
  126. Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol. 1999;86(1):22–8.PubMedGoogle Scholar
  127. Stephenson LA, Kolka MA, Francesconi R, Gonzales RR. Circadian variations in plasma renin activity, catecholamines, and aldosterone during exercise in women. Eur J Appl Physiol. 1989;58:756–64.CrossRefGoogle Scholar
  128. Stumpf WE, Denny ME. Vitamin D (soltriol), light, and reproduction. Am J Obstet Gynecol. 1989;161(5):1375–84.PubMedCrossRefGoogle Scholar
  129. Stupka N, Tiidus PM. Effects of ovariectomy and estrogen on ischemia-reperfusion injury in hindlimbs of female rats. J Appl Physiol. 2001;91(4):1828–35.PubMedGoogle Scholar
  130. Suh S-H, Casazza G, Horning M, Miller B, Brooks G. Luteal and follicular glucose fluxes during rest and exercise in 3-h postabsorptive women. J Appl Physiol. 2002;93:42–50.PubMedCrossRefGoogle Scholar
  131. Suh S-H, Casazza G, Horning M, Miller B, Brooks G. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003;94:285–94.PubMedCrossRefGoogle Scholar
  132. Sun F-H, Wong S-S, Chen S-H, Poon T-C. Carbohydrate electrolyte solutions enhance endurance capacity in active females. Nutrients. 2015;7:3739–50.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tarnopolsky M, Atkinson S, Phillips S, MacDougall J. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol. 1995;75:2134–41.Google Scholar
  134. Tarnopolsky M, Bosman M, MacDonald J, Vadeputte D, Martin J, Roy B. Post-exercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol. 1997;83(6):1877–83.PubMedGoogle Scholar
  135. Tarnopolsky M, Zawada C, Richmond L, Carter S, Shearer J, Graham T, et al. Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol. 2001;91:225–30.PubMedGoogle Scholar
  136. Temesi J, Johnson N, Raymond J, Burdon C, O’Connor H. Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr. 2011;141:890–7.PubMedCrossRefGoogle Scholar
  137. Thys-Jacobs S. Micronutrients and the premenstrual syndrome: the case for calcium. J Am Coll Nutr. 2000;19(2):220–7.PubMedCrossRefGoogle Scholar
  138. Thys-Jacobs S, McMahon D, Bilezikian JP. Cyclical changes in calcium metabolism across the menstrual cycle in women with premenstrual dysphoric disorder. J Clin Endocrinol Metab. 2007;92(8):2952–9.PubMedCrossRefGoogle Scholar
  139. Tranquilli A, Mazzanti L, Cugini A, Cester N, Garzett G, Romanini C. Transdermal estradiol and medroxyprogesterone acetate in hormone replacement therapy are both antioxidants. Gynecol Endocrinol. 1995;9(2):137–41.PubMedCrossRefGoogle Scholar
  140. Van Pelt R, Gozansky W, Schwartz R, Kohrt W. Intravenous estrogens increase insulin clearance and action in postmenopausal women. Am J Physiol Endocrinol Metab. 2003;285:E311–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Verney EB. The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond B Biol Sci. 1947;135(878):25–106.PubMedCrossRefGoogle Scholar
  142. Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowledge Environ. 2005;2005(23), e17.CrossRefGoogle Scholar
  143. Walker J, Heigenhauser G, Hultman E, Spriet L. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol. 2000;88:2151–8.PubMedGoogle Scholar
  144. Wallis G, Yeo S, Blannin A, Jeukendrup A. Dose-response effects of ingested carbohydrate on exercise metabolism in women. Med Sci Sports Exerc. 2007;39(1):131–8.PubMedCrossRefGoogle Scholar
  145. Wismann J, Willoughby D. Gender differences in carbohydrate metabolism and carbohydrate loading. J Int Soc Sports Nutr. 2006;31(1):28–34.CrossRefGoogle Scholar
  146. Zderic T, Coggan A, Ruby B. Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. J Appl Physiol. 2001;90:447–53.PubMedGoogle Scholar
  147. Zittermann A, Geppert J, Baier S, Zehn N, Gouni-Berthold I, Berthold HK, et al. Short-term effects of high soy supplementation on sex hormones, bone markers, and lipid parameters in young female adults. Eur J Nutr. 2004;43(2):100–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Nancy J. Rehrer
    • 1
    Email author
  • Rebecca T. McLay-Cooke
    • 2
  • Stacy T. Sims
    • 3
  1. 1.School of Physical Education Sport & Exercise SciencesUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Human NutritionUniversity of OtagoDunedinNew Zealand
  3. 3.Health, Sport and Human PerformanceUniversity of WaikatoMount MaunganuiNew Zealand

Personalised recommendations