Monotone Paths in Geometric Triangulations

  • Adrian Dumitrescu
  • Ritankar MandalEmail author
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)


(I) We prove that the (maximum) number of monotone paths in a triangulation of n points in the plane is \(O(1.8027^n)\). This improves an earlier upper bound of \(O(1.8393^n)\); the current best lower bound is \(\varOmega (1.7034^n)\). (II) Given a planar straight-line graph G with n vertices, we show that the number of monotone paths in G can be computed in \(O(n^2)\) time.


Monotone path Triangulation Counting algorithm 


  1. 1.
    Ajtai, M., Chvàtal, V., Newborn, M., Szemerèdi, E.: Crossing-free subgraphs. Ann. Discrete Math. 12, 9–12 (1982)MathSciNetzbMATHGoogle Scholar
  2. 2.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. COCOON 2007. LNCS, vol. 4598, pp. 97–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Dumitrescu, A., Löffler, M., Schulz, A., Tóth, C.D.: Counting carambolas. Graphs Combin. 32(3), 923–942 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dumitrescu, A., Rote, G., Tóth, C.D.: Monotone paths in planar convex subdivisions and polytopes. In: Bezdek, K., Deza, A., Ye, Y. (eds.) Discrete Geometry and Optimization. Fields Institute Communications, vol. 69, pp. 79–104. Springer, Cham (2013)CrossRefGoogle Scholar
  6. 6.
    Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2), 802–826 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dumitrescu, A., Tóth, C.D.: Computational geometry column 54. SIGACT News Bull. 43(4), 90–97 (2012)CrossRefGoogle Scholar
  8. 8.
    Dumitrescu, A., Tóth, C.D.: Convex polygons in geometric triangulations. In: Dehne, F., Sack, J.R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 289–300. Springer, Cham (2015)CrossRefGoogle Scholar
  9. 9.
    García, A., Noy, M., Tejel, A.: Lower bounds on the number of crossing-free subgraphs of \(K_N\). Comput. Geom. 16(4), 211–221 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gärtner, B., Kaibel, V.: Two new bounds for the random-edge simplex-algorithm. SIAM J. Discrete Math. 21(1), 178–190 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kaibel, V., Mechtel, R., Sharir, M., Ziegler, G.M.: The simplex algorithm in dimension three. SIAM J. Comput. 34(2), 475–497 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kalai, G.: Upper bounds for the diameter and height of graphs of convex polyhedra. Discrete Comput. Geom. 8(4), 363–372 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kalai, G.: Polytope skeletons and paths. In: O’Rourke, J., Goodman, J.E. (eds.) Handbook of Discrete and Computational Geometry, pp. 455–476. CRC Press, Boca Raton (2004)Google Scholar
  14. 14.
    Klee, V.: Paths on polyhedra I. J. SIAM 13(4), 946–956 (1965)MathSciNetzbMATHGoogle Scholar
  15. 15.
    van Kreveld, M., Löffler, M., Pach, J.: How many potatoes are in a mesh? ISAAC 2012. LNCS, vol. 7676, pp. 166–176. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Matoušek, J., Szabó, T.: RANDOM EDGE can be exponential on abstract cubes. Adv. Math. 204(1), 262–277 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theor. 46, 39–47 (2004). Corrected version: arXiv:1101.0967 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Razen, A., Snoeyink, J., Welzl, E.: Number of crossing-free geometric graphs vs. triangulations. Electron. Notes Discrete Math. 31, 195–200 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Combin. 18, P70 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sharir, M., Sheffer, A.: Counting plane graphs: cross-graph charging schemes. Combin. Probab. Comput. 22(6), 935–954 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Combin. Theor. Ser. A 120(4), 777–794 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sheffer, A.: Numbers of plane graphs (2016).
  25. 25.
    Todd, M.J.: The monotonic bounded Hirsch conjecture is false for dimension at least 4. Math. Oper. Res. 5(4), 599–601 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ziegler, G.M.: Lectures on Polytopes. GTM, vol. 152, pp. 83–93. Springer, New York (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrian Dumitrescu
    • 1
  • Ritankar Mandal
    • 1
    Email author
  • Csaba D. Tóth
    • 2
    • 3
  1. 1.University of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.California State University NorthridgeLos AngelesUSA
  3. 3.Tufts UniversityMedfordUSA

Personalised recommendations