On Maximal Chain Subgraphs and Covers of Bipartite Graphs

  • Tiziana Calamoneri
  • Mattia GastaldelloEmail author
  • Arnaud Mary
  • Marie-France Sagot
  • Blerina Sinaimeri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9843)


In this paper, we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph, for which we provide a polynomial delay algorithm. We give bounds on the number of maximal chain subgraphs for a bipartite graph and use them to establish the input-sensitive complexity of the enumeration problem. The second problem we treat is the one of finding the minimum number of chain subgraphs needed to cover all the edges a bipartite graph. For this we provide an exact exponential algorithm with a non trivial complexity. Finally, we approach the problem of enumerating all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time.


Chain subgraph cover problem Enumeration algorithms Exact exponential algorithms 



T. Calamoneri is supported in part by the Italian Ministry of Education, University, and Research (MIUR) under PRIN 2012C4E3KT national research project “AMANDA - Algorithmics for MAssive and Networked DAta” and in part by Sapienza University of Rome project “Graph Algorithms for Phylogenetics: A Promising Approach”. M. Gastaldello is supported by the Università Italo-Francese project “Algorithms and Models for the solution of difficult problems in biology”. A. Mary is supported by the ANR project GraphEN “Enumération dans les graphes et les hypergraphes: algorithmes et complexité”, ANR-15-CE40-0009.


  1. 1.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bollobás, B.: Modern graph theory. Graduate Texts in Mathematics. Springer-Verlag, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brandstädt, A., Eschen, E.M., Sritharan, R.: The induced matching and chain subgraph cover problems for convex bipartite graphs. Theor. Comput. Sci. 381(1), 260–265 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang-Wu, Y., Gen-Huey, C., Tze-Heng, M.: On the complexity of the k-chain subgraph cover problem. Theor. Comput. Sci. 205(1), 85–98 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dias, V.M.F., de Figueiredo, C.M.H., Szwarcfiter, J.L.: Generating bicliques of a graph in lexicographic order. Theor. Comput. Sci. 337(1–3), 240–248 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dias, V.M.H., de Figueiredo, C.M.H., Szwarcfiter, J.L.: On the generation of bicliques of a graph. Discrete Appl. Math. 155(14), 1826–1832 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fedor, V.: Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag New York Inc, New York, NY, USA (2010)Google Scholar
  9. 9.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nor, I., Engelstädter, J., Duron, O., Reuter, M., Sagot, M.-F., Charlat, S.: On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic data. Am. Nat. 182(1), E15–E24 (2013)CrossRefGoogle Scholar
  14. 14.
    Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods 3(3), 351–358 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tiziana Calamoneri
    • 1
  • Mattia Gastaldello
    • 1
    • 2
    Email author
  • Arnaud Mary
    • 2
  • Marie-France Sagot
    • 2
  • Blerina Sinaimeri
    • 2
  1. 1.Sapienza University of RomeRomaItaly
  2. 2.INRIA and Université de Lyon, Université Lyon 1, LBBE, CNRS UMR558VilleurbanneFrance

Personalised recommendations