Advertisement

Practical Analysis of Key Recovery Attack Against Search-LWE Problem

  • Momonari Kudo
  • Junpei Yamaguchi
  • Yang Guo
  • Masaya YasudaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9836)

Abstract

The security of a number of modern cryptographic schemes relies on the computational hardness of the learning with errors (LWE) problem. In 2015, Laine and Lauter analyzed a key recovery (or decoding) attack against the search variant of LWE. Their analysis is based on a generalization of the Boneh-Venkatesan method for the hidden number problem to LWE. They adopted the LLL algorithm and Babai’s nearest plane method in the attack against LWE, and they also demonstrated a successful range of the attack by experiments for hundreds of LWE instances. In this paper, we give an alternative analysis of the key recovery attack. While Laine and Lauter’s analysis gives explicit information about the effective approximation factor in the LLL algorithm and Babai’s nearest plane method, our analysis is useful to estimate which LWE instances can be solved by the key recovery attack. Furthermore, our analysis enables one to determine a successful range of the attack with practical lattice reduction such as the BKZ algorithm.

Keywords

LWE Lattice reduction Babai’s nearest plane method 

Notes

Acknowledgements

This work was supported by CREST, JST. This work was also supported by JSPS KAKENHI Grant Number 16H02830.

References

  1. 1.
    Albrecht, M.A., Cid, C., Faugère, J.-C., Fitzpartrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74, 325–354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albrecht, M.A., Cid, C., Faugère, J.-C., Perret, L.: Algebraic algorithms for LWE. IACR ePrint 2014/1018Google Scholar
  3. 3.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science-ITCS 2012, pp. 309–325, ACM (2012)Google Scholar
  9. 9.
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Theory of Computing-STOC 2013, pp. 575–584, ACM (2013)Google Scholar
  10. 10.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Foundations of Computer Science-FOCS 2011, pp. 97–106, IEEE (2011)Google Scholar
  12. 12.
    Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Kearns, M.J., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On the learnability of discrete distributions. In: Theory of Computing-STOC 1994, pp. 273–282, ACM (1994)Google Scholar
  17. 17.
    Laine, K., Lauter, K.: Key recovery for LWE in polynomial time. IACR ePrint 2015/176 (2015)Google Scholar
  18. 18.
    Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post Quantum Cryptography–PQCrypto 2009, pp. 147–191. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    National Institute of Standards and Technology (NIST), Report on post-quantum cryptography. http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
  24. 24.
    The PARI Group, PARI/GP. http://pari.math.u-bordeaux.fr/
  25. 25.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Theory of Computing–STOC 2009, pp. 333–342, ACM (2009)Google Scholar
  26. 26.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J. Comput. 40(6), 1803–1844 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Theory of Computing–STOC 2005, pp. 84–93, ACM Press (2005)Google Scholar
  28. 28.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    The Sage Group, SageMath: Open-Source Mathematical SoftwareSystem. http://www.sagemath.org/
  30. 30.
    Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Momonari Kudo
    • 1
  • Junpei Yamaguchi
    • 1
  • Yang Guo
    • 1
  • Masaya Yasuda
    • 2
    • 3
    Email author
  1. 1.Graduate School of MathematicsKyushu UniversityFukuokaJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan
  3. 3.JST, CRESTKawaguchiJapan

Personalised recommendations