Towards Combined Functional and Non-functional Semantic Service Discovery

  • Kyriakos KritikosEmail author
  • Dimitris Plexousakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9846)


Service-orientation is increasingly adopted by application and service developers, leading to a plethora of services becoming increasingly available. To enable constructing applications from such services, respective service description and discovery must be supported by considering both functional and non-functional aspects as they play a significant role in the service management lifecycle. However, research in service discovery has mainly focused on one aspect and not both of them. As such, this paper investigates the issues involved in considering both functional and non-functional aspects in service discovery. In particular, it proposes different ways via which aspect-specific algorithms can be combined to generate a complete service discovery system. It also proposes a specific unified service discovery architecture. Finally, it evaluates the proposed algorithms’ performance to give valuable insights to the reader.


Service Discovery Matchmaking Semantics Ontology Performance Evaluation Functional Non-functional QoS Architecture 



This research has received funding from the European Community’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-2014) under grant agreement number 644690 (CloudSocket).


  1. 1.
    Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: WWW, pp. 795–804. ACM, Beijing (2008)Google Scholar
  2. 2.
    Benaboud, R., Maamri, R., Sahnoun, Z.: Agents and owl-s based semantic web service discovery with user preference support. Int. J. Web Semant. Technol. 4(2), 57–75 (2013)CrossRefGoogle Scholar
  3. 3.
    Charrad, M., Ayadi, N.Y., Ahmed, M.B.: A semantic and QoS-aware broker for service discovery. J. Res. Pract. Inf. Technol. 44(4), 387–399 (2012)Google Scholar
  4. 4.
    Cliffe, O., Andreou, D.: Service Matchmaking Framework. Public Deliverable D5.2a, Alive EU Project Consortium. Accessed 10 Sept 2009
  5. 5.
    Cortés, A.R., Martín-Díaz, O., Toro, A.D., Toro, M.: Improving the automatic procurement of web services using constraint programming. Int. J. Coop. Inf. Syst. 14(4), 439–468 (2005)CrossRefGoogle Scholar
  6. 6.
    Jiang, S., Aagesen, F.A.: An approach to integrated semantic service discovery. In: Gaiti, D., Pujolle, G., Al-Shaer, E.S., Calvert, K.L., Dobson, S., Leduc, G., Martikainen, O. (eds.) AN 2006. LNCS, vol. 4195, pp. 159–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Klein, M., König-Ries, B.: Coupled signature and specification matching for automatic service binding. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 183–197. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Klusch, M.: Semantic web service coordination. In: Schumacher, M., Schuldt, H., Helin, H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, pp. 59–104. Springer, Berlin (2008)CrossRefGoogle Scholar
  9. 9.
    Klusch, M., Fries, B., Sycara, K.: OWLS-MX: a hybrid semantic web service matchmaker for OWL-S services. Web Semant.: Sci. Serv. Agents World Wide Web 7(2), 121–133 (2009)CrossRefGoogle Scholar
  10. 10.
    Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)CrossRefGoogle Scholar
  11. 11.
    Kritikos, K., Plexousakis, D., Paternò, F.: Task model-driven realization of interactive application functionality through services. TiiS 3(4), 25 (2014)CrossRefGoogle Scholar
  12. 12.
    Lemos, F., Grigori, D., Bouzeghoub, M.: Adding non-functional preferences to service discovery. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 299–306. Springer, Heidelberg (2012)Google Scholar
  13. 13.
    Makris, C., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Efficient and adaptive discovery techniques of web services handling large data sets. J. Syst. Softw. 79(4), 480–495 (2006)CrossRefGoogle Scholar
  14. 14.
    Mokhtar, S.B., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: EASY: Efficient semAntic Service discoverY in pervasive computing environments with QoS and context support. J. Syst. Softw. 81(5), 785–808 (2008)CrossRefGoogle Scholar
  15. 15.
    Pathak, J., Koul, N., Caragea, D., Honavar, V.G.: A framework for semantic web services discovery. In: WIDM, pp. 45–50. ACM, New York (2005).
  16. 16.
    Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation. IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)CrossRefGoogle Scholar
  17. 17.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Zheng, Z., Lyu, M.R.: WSPred: a time-aware personalized QoS prediction framework for web services. In: ISSRE (2011)Google Scholar
  19. 19.
    Zhou, C., Chia, L.T., Lee, B.S.: DAML-QoS ontology for web services. In: ICWS, p. 472. IEEE Computer Society (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.ICS-FORTHHeraklionGreece

Personalised recommendations