Operando Research in Heterogeneous Catalysis pp 189-218

Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 114) | Cite as

Catalysis Engineering: From the Catalytic Material to the Catalytic Reactor

  • Stefano Rebughini
  • Mauro Bracconi
  • Alberto Cuoci
  • Matteo Maestri
Chapter

Abstract

This chapter deals with the application of chemical reaction engineering and computational fluid dynamics (CFD) for the analysis and assessment of the interactions between mass and heat transport and chemical reactions. In the first part of the Chapter, we review fundamental concepts of chemical reaction engineering, by showing the potential impact of transport phenomena at the macroscale on the observed functionality of the catalytic material. This includes both the effect of the distribution of the residence times in the reactor and the impact of internal and external transport phenomena. In the second part, we illustrate modern approaches to catalytic reaction engineering based on CFD simulations. In particular, we present the algorithms to couple microkinetic models and kinetic Monte Carlo (kMC) simulations with CFD. The potentialities of the method are assessed by means of a showcase of the CFD-based analysis of a spectroscopic cell for operando experiments. This example clearly shows that transport artifacts in standard equipment may lead to an erroneous interpretation of the experiments if not properly accounted for.

References

  1. 1.
    O. Deutschmann, Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System (Wiley, 2013)Google Scholar
  2. 2.
    M.P. Dudukovic, Science 325, 698 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    M.K. Sabbe, M.-F. Reyniers, K. Reuter, Catal. Sci. Technol. 2, 2010 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Maestri, K. Reuter, Angew. Chem. Int. Ed. 50, 1194 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Salciccioli, M. Stamatakis, S. Caratzoulas, D.G. Vlachos, Chem. Eng. Sci. 66, 4319 (2011)CrossRefGoogle Scholar
  6. 6.
    G.F. Froment, K.B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, vol. 2 (Wiley, New York, 1990)Google Scholar
  7. 7.
    K. Reuter, D. Frenkel, M. Scheffler, arXiv:cond-mat/0408080 (2004)
  8. 8.
    M.R. Charest, C.P. Groth, Ö.L. Gülder, Combust. Theor. Model. 14, 793 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, 1970)Google Scholar
  10. 10.
    T. Coffee, J. Heimerl, Combust. Flame 43, 273 (1981)CrossRefGoogle Scholar
  11. 11.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 2002)Google Scholar
  12. 12.
    C.R. Wilke, J. Chem. Phys. 18, 517 (1950)ADSCrossRefGoogle Scholar
  13. 13.
    S. Mathur, P.K. Tondo, S.C. Saxena, Mol. Phys. 12, 569 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D.G. Vlachos, Chem. Eng. Sci. 63, 2657 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Maestri, D.G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, A.I.Ch.E. J. 55, 993 (2009)Google Scholar
  16. 16.
    M. Maestri, A. Cuoci, Chem. Eng. Sci. 96, 106 (2013)CrossRefGoogle Scholar
  17. 17.
    M.D. Smooke, R.E. Mitchell, D.E. Keyes, Combust. Sci. Technol. 67, 85 (1986)CrossRefGoogle Scholar
  18. 18.
    H. Jasak, A. Jemcov, Z. Tukovic, International Workshop on Coupled Methods in Numerical Dynamics (2007), p. 1Google Scholar
  19. 19.
    S. Matera, K. Reuter, Catal. Lett. 133, 156 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Matera, K. Reuter, arXiv:1006.0343 (2010)
  21. 21.
    S. Matera, K. Reuter, Phys. Rev. B 82, 085446 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Matera, M. Maestri, A. Cuoci, K. Reuter, ACS Catal. 4, 4081 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Armaou, I.G. Kevrekidis, C. Theodoropoulos, Comput. Chem. Eng. 29, 731 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Bindal, M.G. Ierapetritou, S. Balakrishnan, A. Armaou, A.G. Makeev, I.G. Kevrekidis, Chem. Eng. Sci. 61, 779 (2006)CrossRefGoogle Scholar
  25. 25.
    C. Gear, I.G. Kevrekidis, arXiv:physics/0211043 (2002)
  26. 26.
    C.W. Gear, J. Li, I.G. Kevrekidis, Phys. Lett. A 316, 190 (2003)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    W. Gear, I. Kevrekidis, J. Hyman, P. Kevrekidis, O. Runborg, C. Theodoropoulos, Commun. Math. Sci. (2003)Google Scholar
  28. 28.
    I.G. Kevrekidis, C.W. Gear, G. Hummer, AlChE J. 50, 1346 (2004)CrossRefGoogle Scholar
  29. 29.
    I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidid, O. Runborg, C. Theodoropoulos, Commun. Math. Sci. 1, 715 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Roberts, I. Kevrekidis, ANZIAM J. 46, 637 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Samaey, I.G. Kevrekidis, D. Roose, Multiscale Modelling and Simulation (Springer, 2004), p. 93Google Scholar
  32. 32.
    G. Samaey, D. Roose, I.G. Kevrekidis, Multiscale Model. Simul. 4, 278 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Schaefer, A. Jansen, J. Chem. Phys. 138, 054102 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    L.J. Broadbelt, R.Q. Snurr, Appl. Catal. A 200, 23 (2000)CrossRefGoogle Scholar
  35. 35.
    D.J. Dooling, L.J. Broadbelt, Ind. Eng. Chem. Res. 40, 522 (2001)CrossRefGoogle Scholar
  36. 36.
    D. Majumder, L.J. Broadbelt, AlChE J. 52, 4214 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Stierle, A.M. Molenbroek, MRS Bull. 32, 1001 (2007)CrossRefGoogle Scholar
  38. 38.
    M. Maestri, D. Livio, A. Beretta, G. Groppi, Ind. Eng. Chem. Res. 53, 10914 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Maestri, D.G. Vlachos, A. Beretta, G. Groppi, E. Tronconi, AlChE J. 55, 993 (2009)CrossRefGoogle Scholar
  40. 40.
    T. Maffei, S. Rebughini, G. Gentile, S. Lipp, A. Cuoci, M. Maestri, Chem. Ing. Tech. 86, 1099 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Stefano Rebughini
    • 1
  • Mauro Bracconi
    • 1
  • Alberto Cuoci
    • 2
  • Matteo Maestri
    • 1
  1. 1.Laboratory of Catalysis and Catalytic Processes - Dipartimento di EnergiaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”Politecnico di MilanoMilanItaly

Personalised recommendations