Monotonicity in Ant Colony Classification Algorithms

  • James BrookhouseEmail author
  • Fernando E. B. Otero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9882)


Classification algorithms generally do not use existing domain knowledge during model construction. The creation of models that conflict with existing knowledge can reduce model acceptance, as users have to trust the models they use. Domain knowledge can be integrated into algorithms using semantic constraints to guide model construction. This paper proposes an extension to an existing ACO-based classification rule learner to create lists of monotonic classification rules. The proposed algorithm was compared to a majority classifier and the Ordinal Learning Model (OLM) monotonic learner. Our results show that the proposed algorithm successfully outperformed OLM’s predictive accuracy while still producing monotonic models.


Ant colony optimization Semantic constraints Monotonic Data mining Classification rules Sequential covering 


  1. 1.
    Ben-David, A.: Monotonicity maintenancs in information-theoretic machine learning algorithms. Mach. Learn. 19, 29–43 (1995)Google Scholar
  2. 2.
    Ben-David, A., Sterling, L., Tran, T.: Adding monoticity to learning algorithms may impair their accuracy. Expert Syst. Appl. 36, 6627–6634 (2009)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26, 29–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. A Bradford Book. The MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  5. 5.
    Duivesteijn, W., Feelders, A.: Nearest neighbour classification with monotonicity constraints. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 301–316. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge discovery: an overview. In: Advances in Knowledge Discovery & Data Mining, pp. 1–34. MIT Press (1996)Google Scholar
  7. 7.
    Feelders, A., Pardoel, M.: Pruning for monotone classification trees. In: Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54 (1999)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hoover, K., Perez, S.: Three attitudes towards data mining. J. Econ. Methodol. 7(2), 195–210 (2000)CrossRefGoogle Scholar
  10. 10.
    Lichman, M.: UCI machine learning repository (2013).
  11. 11.
    Martens, D., De Backer, M., Haesen, R., Baesens, B., Mues, C., Vanthienen, J.: Ant-based approach to the knowledge fusion problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 84–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)CrossRefGoogle Scholar
  13. 13.
    Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data mining. Mach. Learn. 82(1), 1–42 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Otero, F., Freitas, A., Johnson, C.: A new sequential covering strategy for inducing classification rules with ant colony algorithms. IEEE Trans. Evol. Comput. 17(1), 64–76 (2013)CrossRefGoogle Scholar
  15. 15.
    Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Potharst, R., Ben-David, A., van Wezel, M.: Two algorithms for generating structured and unstructured monotone ordinal data sets. Eng. Appl. Artif. Intell. 22(4), 491–496 (2009)CrossRefGoogle Scholar
  17. 17.
    Qian, Y., Xu, H., Liang, J., Liu, B., Wang, J.: Fusing monotonic decision trees. IEEE Trans. Knowl. Data Eng. 27(10), 2717–2728 (2015)CrossRefGoogle Scholar
  18. 18.
    Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingUniversity of KentChatham MaritimeUK

Personalised recommendations