Advertisement

Spacetime Is Doomed

  • George MusserEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Theoretical physicists have not wanted for imagination when it comes to developing a quantum theory of gravity. String theory, loop quantum gravity, causal-set theory, twistor theory: the approaches are diverse and the disagreements among their proponents are often vehement. And yet they have a common feature: that classical spacetime is not a fundamental ingredient of the world, but a construction consisting of more fundamental degrees of freedom. Those degrees of freedom become structured in very specific ways to give rise to the observed features of classical spacetime. I’ll discuss the interpretational implications of several leading theories.

Keywords

Matrix Model Entanglement Entropy Noncommutative Geometry Holographic Entanglement Entropy Loop Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arkani-Hamed, N., & Trnka, J. (2014). The Amplituhedron. Journal of High Energy Physics (10):30.Google Scholar
  2. 2.
    Balasubramanian, V., Kraus, P., Lawrence, A., & Trivedi, S. (1999). Holographic probes of anti–de sitter spacetimes. Physical Review D, 59(10), 104021.ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Balasubramanian, V. Per Kraus Spacetime and the holographic renormalization group. Physical Review Letters 83(18).Google Scholar
  4. 4.
    Banks, T. (1998). The State of matrix theory. Nuclear Physics B-Proceedings Supplements, 62(1), 341–347.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banks, T, Fischler, W, Shenker, S. H., & Susskind, L. (1997). M theory as a matrix model: a conjecture. Physical Review D, 55(8), .ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barbour, J. B. (2001). The end of time: the next revolution in physics. New York: Oxford University Press.Google Scholar
  7. 7.
    Bern, Z., Dixon, L. J., Dunbar, D. C., & Kosower, D. A. (1995). Fusing gauge theory tree amplitudes into loop amplitudes. Nuclear Physics B, 435(1), 59–101.ADSCrossRefGoogle Scholar
  8. 8.
    Bohm, D., & Hiley, B. J. (1995). The undivided universe: an ontological interpretation of quantum theory. Reprint. London: Routledge.zbMATHGoogle Scholar
  9. 9.
    Bombelli, L., Lee, J., Meyer, D., & Sorkin, R. D. (1987). Space-Time as a causal set. Physical Review Letters, 59(5), 521–524.ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dowker, F. (2005). Causal sets and the deep structure of spacetime. In A. Ashtekar (Ed.) One hundred years of relativity (pp. 445–64). Hackensack, N.J: World Scientific.Google Scholar
  11. 11.
    Finkelstein, D. R. (1969). Space-Time code. Physical Review, 184(5), 1261–1271.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fletcher, N. H. (1993). Nonlinear dynamics and chaos in musical instruments. In Green, D. G., BOssomaier, T. (Eds.) Complex systems: from biology to computation (pp. 106–117). Amsterdam: IOS Press.Google Scholar
  13. 13.
    Hamma, A., & Markopoulou, F. (2011). Background-independent condensed matter models for quantum gravity. New Journal of Physics, 13(9), 095006.ADSCrossRefGoogle Scholar
  14. 14.
    Heemskerk, I., Penedones, J., Polchinski, J., & Sully, J. (2009). Holography from conformal field theory. Journal of High Energy Physics, 2009(10), 079.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Heller, M., & Sasin, W. (1998). Einstein-Podolski-Rosen experiment from noncommutative quantum gravity. AIP Conference Proceedings, 453, 234–241.ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Heller, M., Sasin, W. (1999). Nonlocal phenomena from noncommutative pre-planckian regime. arXiv.org, 17 Jun 1999.Google Scholar
  17. 17.
    Henson, J. (2009). The causal set approach to quantum gravity. In D. Oriti (Ed.) Approaches to quantum gravity: toward a new understanding of space, time and matter (pp. 393–413). New York: Cambridge University Pres.Google Scholar
  18. 18.
    Konopka, T., Markopoulou, F., Severini, S. (2008). Quantum graphity: a model of emergent locality. Physical Review D 77(10).Google Scholar
  19. 19.
    Loll, R., Ambjørn, J., Jurkiewicz, J. (2006). The universe from scratch. Contemporary Physics 47(2).Google Scholar
  20. 20.
    Martinec, E. J. (2013). Evolving notions of geometry in string theory. Foundations of Physics, 43(1), 156–173.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Misner, C. W., Kip, S. (1973). Thorne, and John Archibald wheeler. In Gravitation, 1st edn. San Francisco: W. H. Freeman.Google Scholar
  22. 22.
    Musser, G. S., Jr. (2008). The complete idiot’s guide to string theory. New York: Penguin Group.Google Scholar
  23. 23.
    Nishioka, T., Ryu, S., & Takayanagi, T. (2009). Holographic entanglement entropy: an overview. Journal of Physics a: Mathematical and Theoretical, 42(50), 504008.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Penrose, R. (2005). The road to reality: A complete guide to the laws of the universe‎. London: Jonathan Cape.zbMATHGoogle Scholar
  25. 25.
    Pettit, P. (1996). The Common mind: An essay on psychology, society, and politics. New York: Oxford University Press.CrossRefGoogle Scholar
  26. 26.
    Riemann, G. (1873). On the hypotheses which lie at the bases of geometry. Nature, 8(1), 36–37.Google Scholar
  27. 27.
    Stanley, H. E., Amaral, L. A. N., Gopikrishnan, P., Ivanov, P Ch., Keitt, T. H., & Plerou, V. (2000). Scale invariance and universality: organizing principles in complex systems. Physica A: Statistical Mechanics and Its Applications, 281(1), 60–68.ADSCrossRefGoogle Scholar
  28. 28.
    Susskind, L., & Witten, E. (1998). The holographic bound in anti-de sitter space.arXiv.org, May 19, 1998.Google Scholar
  29. 29.
    Swingle, B. (2012). Constructing holographic spacetimes using entanglement renormalization. arXiv.org, September 14, 2012.Google Scholar
  30. 30.
    Van Raamsdonk, M. (2010). Building up spacetime with quantum entanglement. In General Relativity and Gravitation 42(10):Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Scientific AmericanGlen RidgeUSA

Personalised recommendations