Advertisement

A Multi-modal Metric Learning Framework for Time Series kNN Classification

  • Cao-Tri Do
  • Ahlame Douzal-ChouakriaEmail author
  • Sylvain Marié
  • Michèle Rombaut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9785)

Abstract

This work proposes a temporal and frequential metric learning framework for a time series nearest neighbor classification. For that, time series are embedded into a pairwise space where a combination function is learned based on a maximum margin optimization process. A wide range of experiments are conducted to evaluate the ability of the learned metric on time series kNN classification.

Keywords

Metric learning Time series kNN Classification Spectral metrics 

References

  1. 1.
    Najmeddine, H., Jay, A., Marechal, P., Marié, S.: Mesures de similarité pour l’aide à l’analyse des données énergétiques de bâtiments. In: RFIA (2012)Google Scholar
  2. 2.
    Yin, J., Gaber, M.: Clustering distributed time series in sensor networks. In: ICDM (2008)Google Scholar
  3. 3.
    Nguyen, L., Wu, P., Chan, W., Peng, W., Zhang, Y.: Predicting collective sentiment dynamics from time-series social media. In: WISDOM (2012)Google Scholar
  4. 4.
    Díaz, M., Juan, G., Lucas, O., Ryuga, A.: Big data on the internet of things: an example for the E-health. In: IMIS (2012)Google Scholar
  5. 5.
    Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24, 164–181 (2011)CrossRefGoogle Scholar
  6. 6.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Ding, H., Trajcevski, G., Scheuermann, P.: Querying, mining of time series data: experimental comparison of representations and distance measures. In: VLDB (2008)Google Scholar
  8. 8.
    Douzal-Chouakria, A., Amblard, C.: Classification trees for time series. Pattern Recogn. J. 45, 1076–1091 (2011)CrossRefGoogle Scholar
  9. 9.
    Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 115, 3129–3152 (2011)CrossRefGoogle Scholar
  10. 10.
    Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)zbMATHGoogle Scholar
  11. 11.
    Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Duin, R.P.W., Bicego, M., Orozco-Alzate, M., Kim, S.-W., Loog, M.: Metric learning in dissimilarity space for improved nearest neighbor performance. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 183–192. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Ibba, A., Duin, R., Lee, W.: A study on combining sets of differently measured dissimilarities. In: Proceedings International Conference on Pattern Recognition, pp. 3360–3363 (2010)Google Scholar
  14. 14.
    Do, C., Douzal-Chouakria, A., Marié, S., Rombaut, M.: Multiple metric learning for large margin kNN classification of time series. In: Proceedings of the 23rd European Signal Processing Conference (EUSIPCO), Nice, France, pp. 2391–2395 (2015)Google Scholar
  15. 15.
    Sahidullah, M., Saha, G.: Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Commun. 54(4), 543–565 (2012)CrossRefGoogle Scholar
  16. 16.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRefGoogle Scholar
  17. 17.
    Brigham, E.O., Morrow, R.E.: The fast fourier transform. Spectr. IEEE 4(12), 63–70 (1967)CrossRefGoogle Scholar
  18. 18.
    Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 115(12), 3129–3152 (2011)CrossRefGoogle Scholar
  19. 19.
    Abraham, Z., Tan, P.N.: An integrated framework for simultaneous classification and regression of time-series data. In: ACM SIGKDD (2010)Google Scholar
  20. 20.
    Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen, J., Benesty, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classification/clustering homepage (2011)Google Scholar
  22. 22.
    Bache, K., Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml
  23. 23.
    LIG-AMA Machine Learning Datasets Repository (2014)Google Scholar
  24. 24.
    Frambourg, C., Douzal-Chouakria, A., Gaussier, E.: Learning multiple temporal matching for time series classification. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 198–209. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cao-Tri Do
    • 1
    • 2
    • 3
  • Ahlame Douzal-Chouakria
    • 2
    Email author
  • Sylvain Marié
    • 1
  • Michèle Rombaut
    • 3
  1. 1.Schneider ElectricParisFrance
  2. 2.LIGUniversity of Grenoble AlpesGrenobleFrance
  3. 3.GIPSA-LabUniversity of Grenoble AlpesGrenobleFrance

Personalised recommendations