A Comparison of Progressive and Iterative Centroid Estimation Approaches Under Time Warp

  • Saeid Soheily-KhahEmail author
  • Ahlame Douzal-Chouakria
  • Eric Gaussier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9785)


Estimating the centroid of a set of time series under time warp is a major topic for many temporal data mining applications, as summarization a set of time series, prototype extraction or clustering. The task is challenging as the estimation of centroid of time series faces the problem of multiple temporal alignments. This work compares the major progressive and iterative centroid estimation methods, under the dynamic time warping, which currently is the most relevant similarity measure in this context.


Centroid estimation Multiple temporal alignment Dynamic time warping Time series 


  1. 1.
    Abdulla, W.H., Chow, D., Sin, G.: Cross-words reference template for DTW-based speech recognition systems. In: Proceedings of TENCON, vol. 2, pp. 1576–1579 (2003)Google Scholar
  2. 2.
    Hautamaki, V., Nykanen, P., Franti, P.: Time-series clustering by approximate prototypes. In: 19th International Conference on Pattern Recognition (2008)Google Scholar
  3. 3.
    Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44, 678–693 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhou, F., De la Torre, F.: Generalized time warping for multi-modal alignment of human motion. In: Computer Vision and Pattern Recognition (CVPR), pp. 1282–1289. IEEE (2012)Google Scholar
  5. 5.
    Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: from continuous to discrete. Time Warps Journal. Addison-Wesley (1983)Google Scholar
  6. 6.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech, Signal Process. 26, 43–49 (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Cambridge University Press, Addison-Wesley, Reading (1983)zbMATHGoogle Scholar
  8. 8.
    Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. J. Comput. Biol. 22(22), 4673–4680 (1994)Google Scholar
  9. 9.
    Notredame, C., Higgins, D.-G., Heringa, J.: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. - J MOL BIOL 302(1), 205–217 (2000)CrossRefGoogle Scholar
  10. 10.
    Sze, S.-H., Lu, Y., Yang, Q.: A polynomial time solvable formulation of multiple sequence alignment. J. Comput. Biol. 13(2), 309–319 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Carrillo, H., Lipman, D.: The multiple sequence alignment problem in biology. SIAM J. Appl. Math. 48, 1073–1082 (1988). Society for Industrial and Applied Mathematics, Philadelphia, PA, USAMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gupta, L., Molfese, D., Tammana, R., Simos, P.: Nonlinear alignment and averaging for estimating the evoked potential. IEEE Trans. Biomed. Eng. 43(4), 348–356 (1996)CrossRefGoogle Scholar
  13. 13.
    Soheily-Khah, S., Douzal-Chouakria, A., Gaussier, E.: Progressive and iterative approaches for time series averaging. In: ECML-PKDD (Advanced Analytics and Learning on Temporal Data) (2015)Google Scholar
  14. 14.
    UCI Machine Learning Repository.
  15. 15.
    UCR Time Series Classification Archive.
  16. 16.
    Niennattrakul, N., Ratanamahatana, C.: On clustering multimedia time series data using K-means and dynamic time warping. In: International onference on IEEE Multimedia and Ubiquitous Engineering, MUE 2007, pp. 733–738 (2007)Google Scholar
  17. 17.
    Niennattrakul, N., Ratanamahatana, C.: Shape averaging under time warping. In: ECTI-CON 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. IEEE, vol. 2, pp. 626–629, May 2009Google Scholar
  18. 18.
    Zhou, F., De la Torre, F.: Canonical time warping for alignment of human behavior. Adv. Neural Inf. Process. Syst. 22, 2286–2294 (2009)Google Scholar
  19. 19.
    Frambourg, C., Douzal-Chouakria, A., Gaussier, E.: Learning multiple temporal matching for time series classification. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 198–209. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Soheily-Khah, S., Douzal-Chouakria, A., Gaussier, E.: Generalized \(k\)-means-based clustering for temporal data under weighted and kernel time warp. J. Pattern Recogn. Lett. 75, 63–69 (2016). doi: 10.1016/j.patrec.2016.03.007 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Saeid Soheily-Khah
    • 1
    Email author
  • Ahlame Douzal-Chouakria
    • 1
  • Eric Gaussier
    • 1
  1. 1.Université Grenoble Alpes, CNRS - LIG/AMAGrenobleFrance

Personalised recommendations