Advertisement

Bacillus spp.: A Promising Biocontrol Agent of Root, Foliar, and Postharvest Diseases of Plants

  • Mahfuz Rahman
Chapter

Abstract

Biological control of plant disease is gaining momentum as it offers an alternative and supplement to synthetic chemicals. Microorganisms from diverse groups have successfully been used as biocontrol agents (BCA) due to their capacity of suppressing harmful microbes with a wide array of mechanisms such as competition, antibiosis, and resistance induction in the host plant. Bacillus spp. is among the highly potent bacterial BCAs used for controlling principally rhizosphere and to a lesser extent foliar diseases of plants. The capacity of Bacilli to produce spores which are extremely resistant to high temperatures, unfavorable pH, and lack of nutrients or water are determining factors for using these organisms in a formulation. These spores are produced by the bacteria when environmental conditions are unfavorable to help these microorganisms to survive in the phytosphere and ward off the growth of harmful microbes. Bacillus subtilis strain QST 713 that has been used in the commercially available plant disease control product “Serenade” showed excellent disease suppression in diverse environmental conditions and crop varieties. This product along with many other similar products is now considered as an essential component of any integrated disease management effort due to their compatibility with many chemicals used for disease control. Many other strains of Bacillus subtilis and species of Bacillus have also been used for seed treatment, induction of systemic resistance, and suppression of both root and foliar disease-causing organisms. Major agrochemical companies have shown interests and diligently work in incorporating Bacillus-based products in their portfolio. Significant efforts have been made to unravel the genetic makeup of these beneficial Bacilli that encode a wide range of antimicrobial products. An appreciable number of polypeptides, polyketides, and related products have been identified and characterized by which they achieve competitive edge in the plant rhizosphere or form biofilm on root surface. Continued interest and research on this BCA in twenty-first century will make Bacillus-based formulations most widely used plant disease management tool.

Keywords

Bacillus Subtilis Biocontrol Agent Botrytis Cinerea Rhizoctonia Solani Postharvest Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmed, A. S., Ezziyyani, M., Sanchez, C. P., & Candela, M. E. (2003). Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. European Journal of Plant Pathology, 109, 633–637.CrossRefGoogle Scholar
  2. Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T., & Samiyappan, R. (2011). Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biological Control, 57, 175–183.CrossRefGoogle Scholar
  3. Alemayehu, M. (1998). Untersuchungen über Vorkommen und Bedeutung Auxin- und Cytokinin- aktiver Stoffwechselprodukte bei phytosanitär wirksamen Bacillus subtilis-Isolaten. In: Agrarwissenschaftliche Forschungsergebnisse Bd. 9, Hamburg: Verlag Kovac.Google Scholar
  4. Alfonzo, A., Coniglaro, G., Torta, L., Burruano, S., & Moschetti, G. (2009). Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathologia Mediterranea, 48, 155–158.Google Scholar
  5. Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47, 282–288.CrossRefGoogle Scholar
  6. Analia, E.P., & Cecilia, M. (2007). Status and progress of biological control of wheat (Triticum aestivum l.) foliar diseases in Argentina. Fitosanidad vol. 11, no. 2, junio 2007.Google Scholar
  7. Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201–209.CrossRefGoogle Scholar
  8. Arrebola, E., Sivakumar, D., & Korsten, K. (2009). Effect of volatile compounds by Bacillus strains on post-harvest decay in citrus. Biological Control, 53, 122–128.CrossRefGoogle Scholar
  9. Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis B14. Applied and Environmental Microbiology, 62, 408–4085.Google Scholar
  10. Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotechnology, 4, 127–136.Google Scholar
  11. Atlas, R. M., & Bartha, R. (1987). Microbial ecology fundamentals and applications (2nd ed.). California: The Benjamin Cummings Publishing Company.Google Scholar
  12. Backman, P. A., Wilson, M., & Murphy, J. F. (1997). Bacteria for biological control of plant diseases. In Rechcigl & Rechcigl (Eds.), Environmentally safe approaches to crop disease control (pp. 95–109). Boca Raton: CRC Press.Google Scholar
  13. Backmann, P. A., Brannen, P. M., & Mahaffe, W. F. (1994). Plant response and disease control following seed inoculation with Bacillus subtilis. In M. H. Ryder, P. M. Stephens, & G. D. Bowen (Eds.), Improving plant productivity with Rhizosphere Bacteria (pp. 3–8). Adelaide: CSIRO Division of Soils.Google Scholar
  14. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307–319.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baker, C. J., Stavely, J. R., & Mock, N. (1985). Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Diseases, 69, 770–772.CrossRefGoogle Scholar
  16. Baysal, O., Caliskan, M., & Yesilova, O. (2008). An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiological and Molecular Plant Pathology, 73, 25–32.CrossRefGoogle Scholar
  17. Benhamou, N., Kloepper, J. W., Quadt-Hallman, A., & Tuzun, S. (1996). Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology, 112, 919–929.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Berger, F., Li, H., White, D., Frazer, R., & Leifert, C. (1996). Effect of pathogen inoculum, antagonist density and plant species on biological control of phytophthora and pythium damping off by Bacillus subtilis Cot1 in high humidity fogging glasshouses. Phytopathology, 86, 428–433.CrossRefGoogle Scholar
  19. Bochow, H., El-Sayed, S. F., Junge, H., Stavropoulou, A., & Schmiedeknecht, G. (2001). Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection, 108, 21–30.Google Scholar
  20. Borriss, R. (2011). Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Plant growth responses (pp. 41–76). Heidelberg: Springer.CrossRefGoogle Scholar
  21. Brannen, P. M., & Kenney, D. S. (1997). Kodiak – A successful biological control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology & Biotechnology, 19, 169–171.CrossRefGoogle Scholar
  22. Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 11, 939–950.CrossRefGoogle Scholar
  23. Bull, C. T., Weller, D. M., & Tomashow, L. S. (1991). Relationship between root colonisation and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology, 81, 954–959.CrossRefGoogle Scholar
  24. Cano, R. J., & Borucki, M. K. (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science, 268, 1060–1064.PubMedCrossRefGoogle Scholar
  25. Casals, C., Teixido, N., Vinas, I., Silvera, E., Lamarca, N., & Usall, J. (2010). Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. European Journal of Plant Pathology, 128, 51–63.CrossRefGoogle Scholar
  26. Castillo, J. D., Lawrence, K. S., & Kloepper, J. W. (2013). Biocontrol of the reniform nematode by Bacillus firmus GB-126 and Paecilomyces lilacinus 251 on cotton. Plant Diseases, 97, 967–976.CrossRefGoogle Scholar
  27. Chakraborty, A. P., Chakraborty, B. N., & Chakraborty, U. (2010). Protection of tea plants against pest and pathogen through combined application of pesticide and plant growth promoting rhizobacterium. Journal of Mycology and Plant Pathology, 40, 519–531.Google Scholar
  28. Chebotar, V. K., Makarova, N. M., Shaposhnikov, A. I., & Kravchenko, L. V. (2009). Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Applied Biochemistry and Microbiology, 45, 419–423.CrossRefGoogle Scholar
  29. Chen, X. H., Vater, J., Piel, J., Franke, P., Scholz, R., Schneider, K., Koumoutsi, A., Hitzeroth, G., Grammel, N., Strittmatter, A. W., Gottschalk, G., Süssmuth, R. D., & Borriss, R. (2006). Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. Journal of Bacteriology, 188, 4024–4036.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J. H. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15, 848–864.PubMedCrossRefGoogle Scholar
  31. Collins, D. P., & Jacobsen, B. J. (2003). Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biological Control, 26, 153–161.CrossRefGoogle Scholar
  32. Curl, E. A., & Truelove, B. (1986). The rhizosphere. Advanced series in agricultural sciences (Vol. 15). Berlin: Springer-Verlag. 288 p.Google Scholar
  33. DeFuria, M. D., & Claridge, C. A. (1976). Aminoglycoside antibiotics produced by the genus Bacillus. In D. Schlessinger (Ed.), Microbiology – 1976 (pp. 427–436). Washington, DC: American Society for Microbiology.Google Scholar
  34. Dolej, S. (1998). Wirkung von Stoffwechselprodukten des Rhizobakteriums Bacillus subtilis (Ehrenber) Cohen im Pathosystem Tomate (Lycopersicon esculentum Mill.) – Fusarium oxysporum f.sp. radicis-lycopersici Jarvis & Shoemaker, Diss. Humboldt Universität Berlin.Google Scholar
  35. Elad, Y. (2003). Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 68, 17–24.PubMedGoogle Scholar
  36. Elad, Y., & Chet, I. (1987). Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology, 77, 190–195.CrossRefGoogle Scholar
  37. Fravel, D. (1999). Commercial biocontrol products for use against soilborne crop diseases. January 1. http://www.barc.usda.gov/psi/bpdl/bpdlprod/bioprod.html
  38. Giannakou, O. I., Karpouzas, D. G., & Prophetou-Athanasiadou, D. A. (2004). A novel non-chemical nematicide for the control of root-knot nematodes. Applied Soil Ecology, 26, 69–79.CrossRefGoogle Scholar
  39. Giannakou, O. I., Anastasiadis, A. I., Gowen, S. R., & Prophetou-Athanasiadou, D. A. (2007). Effects of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes. Crop Protection, 26, 1644–1654.CrossRefGoogle Scholar
  40. Gilden, R., Huffling, K., & Sattler, B. (2010). Pesticides and health risks. Journal of Obstettric, Gynecologic and Neonatal Nursing, 39, 103–110.CrossRefGoogle Scholar
  41. Gong, Q., Zhang, C., Lu, F., Zhao, H., Bie, X., & Lu, Z. (2013). Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control, 36, 8–14.CrossRefGoogle Scholar
  42. Griffin, G. J., Hale, M. G., & Shay, F. J. (1976). Nature and quality of sloughed organic matter produced by roots of axenic peanut plants. Soil Biology & Biochemistry, 8, 29–32.CrossRefGoogle Scholar
  43. Grosch, R., Malies, U., & Bochow, H. (1996). Population dynamics of biocontrol agent Bacillus subtilis in closed hydroponic plant cultivation systems after application of different cell numbers. Bulletin OILB Scrop, 19, 134–144.Google Scholar
  44. Grosch, R., Orlicz-Luthardt, A., & Kilian, M. (1999). Erfahrungen in der Anwendung von Bacillus subtilis gegen die Fusarium Welke an Astern und Cyclamen. In: Gartenbauliche Berichte, Heft 3, Schriftenreihe des Institutes für Gemüse und Zierpfanzenbau Großbeeren/Erfurt e.V. Potsdam: UNZE-Verlag.Google Scholar
  45. Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, E. G., & Cutler, H. G. (1988). Isolation and identification of Iturins as antifungal peptides on biological control of peach brown rot with Bacillus subtilis. Journal of Agricultural and Food Chemistry, 36, 366–370.CrossRefGoogle Scholar
  46. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627.PubMedCrossRefGoogle Scholar
  47. Guiñazú, L. B., Andrés, J. A., Del Papa, M. F., Pistorio, M., & Rosas, S. B. (2010). Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biology and Fertility of Soils, 46, 185–190.CrossRefGoogle Scholar
  48. Gupta, V. K., & Utkhede, R. S. (1987). Nutritional requirement for production of antifungal substance by Enterobacter aerogenes and Bacillus subtilis Antagonists of Phytophthora cactorum. Phytopathology, 120, 143–153.CrossRefGoogle Scholar
  49. Haggag, W. M. (2008). Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Biocontrol Science and Technology, 41, 477–491.Google Scholar
  50. Hain, R. et al. (1995). Screening Verfahren auf Resistenzinduktoren EPA 0837945 (In Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R 2000. FZB24® Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1/00, 1.Google Scholar
  51. Handelsman, J., & Parke, J. L. (1989). Mechanisms in biocontrol of soilborne plant pathogens. In T. Kosuge & E. W. Nester (Eds.), Plant-microbe interactions, molecular and genetic perspectives (Vol. 3, pp. 27–61). New York: McGraw-Hill.Google Scholar
  52. Handelsmann, J., & Stabb, E. V. (1996). Biocontrol of soilborne pathogens. The Plant Cell, 8, 1855–1869.CrossRefGoogle Scholar
  53. Harman, G. E., & Nelson, E. B. (1994). Mechanisms of protection of seed and seedlings by biological control treatments: Implications for practical disease control. In T. Martin (Ed.), Seed treatment: Progress and prospects (pp. 283–292). Farnham: BCPC.Google Scholar
  54. Hawes, M. C., Brigham, L. A., Wen, F., Woo, H. H., & Zhu, Y. (1998). Function of root border cells in plat health: Pioneers in the Rhizosphere. Annual Review of Phytopathology, 36, 311–327.PubMedCrossRefGoogle Scholar
  55. Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 6, 693–698.CrossRefGoogle Scholar
  56. Hiraoka, H., Ano, T., & Shoda, M. (1992). Molecular cloning of a gene responsible for the biosynthesis of the lipopeptide antibiotics iturin and surfactin. Journal of Fermentation and Bioengineering, 74, 323–326.CrossRefGoogle Scholar
  57. Idris, E. I., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of Indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20, 619–626.PubMedCrossRefGoogle Scholar
  58. Ji, X. L., Lu, G. B., Gai, Y. P., Zheng, C. C., & Mu, Z. M. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology, 65, 565–573.PubMedCrossRefGoogle Scholar
  59. Jiang, C., Shi, J., Liu, Y., & Zhu, C. (2014). Inhibition of Aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis. Food Control, 35, 41–48.CrossRefGoogle Scholar
  60. Junaid, J. M., Dar, N. A., Bhat, T. A., Bhat, A. R., & Bhat, M. A. (2013). Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant Animal Science, 2, 39–57.Google Scholar
  61. Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus. Bacteriological Reviews, 41, 449–474.PubMedPubMedCentralGoogle Scholar
  62. Kehlenbeck, H., Krone, C., Oerke, E. C., & Schönbeck, F. (1994). The effectiveness of induced resistance on yield of mildewed barley. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 101, 11–21.Google Scholar
  63. Kiewnick, S., Jacobsen, B. J., Braun-Kiewnick, A., Eckhoff, J. L. A., & Bergman, J. W. (2001). Integrated control of Rhizoctonia crown and root rot of sugar beet with fungicides and antagonistic bacteria. Plant Diseases, 85, 718–722.CrossRefGoogle Scholar
  64. Kilian, M., Steiner, U., Krebs, B., Junge, H., Schmiedeknecht, G., & Hain, R. (2000). FZB24® Bacillus subtilis–mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 1/00, 1. 72–93.Google Scholar
  65. Kinsella, K., Schulthess, C. P., Morris, T. F., & Stuart, J. D. (2010). Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biology & Biochemistry, 42, 1009–1192.CrossRefGoogle Scholar
  66. Kloepper, J. W., Zablotowicz, R. M., Tipping, E. M., & Lifshitz, R. (1991). Plant growth promotion mediated by bacterial rhizosphere colonizers. In D. L. Keister & P. B. Cregan (Eds.), The rhizosphere and plant growth (pp. 315–326). Dordrecht: Kluwer Academic Publishers.Google Scholar
  67. Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., & Fortnum, B. A. (1999). Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Journal of Nematology, 31, 587–618.PubMedPubMedCentralGoogle Scholar
  68. Kondoh, M., Hirai, M., & Shoda, M. (2000). Co-utilization of Bacillus subtilis and Flutolanil in controlling damping-off of tomato caused by Rhizoctonia solani. Biotechnology Letters, 22, 1693–1697.CrossRefGoogle Scholar
  69. Korsten, L., DeVilliers, E. E., Wehner, F. C., & Kotze, J. M. (1997). Field sprays of Bacillus subtilis and fungicides for control of preharvest fruit diseases of avocado in South Africa. Plant Diseases, 5, 455–459.CrossRefGoogle Scholar
  70. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Gabriele, H., Franke, P., Vater, J., & Borris, R. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 86, 1084–1096.CrossRefGoogle Scholar
  71. Krebs, B., Ockhardt, A., Hoeding, B., Bendzko, P., Maximov, J., & Etzel, W. (1996). Cyclic peptides from Bacillus amyloliquefaciens useful antimycotics, antivirals, fungicides, nematicides etc., DE19641213.Google Scholar
  72. Krebs, B., Höding, B., Kübart, S., Alemayehu Workie, M., Junge, H., Schmiedknecht, G., Grosch, R., Bochow, H., & Hevesi, M. (1998). Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot, 105, 181–197.Google Scholar
  73. Kula, M. R. (1982). Enzyme. In P. Präve, U. Faust, & W. Sittig (Eds.), Handbuch der Biotechnologie (pp. 379–412). Wiesbaden: Akad. Verlagsgesellschaft.Google Scholar
  74. Kumar, H., Bajpai, V. K., Dubey, R. C., Mahesh wari, D. K., & Kang, S. C. (2010). Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection, 29, 591–598.CrossRefGoogle Scholar
  75. Kumar, A. S., Lakshmanan, V., Caplan, J. L., Powell, D., Czymmek, K. J., Levia, D. F., & Bais, H. P. (2012). Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. The Plant Journal, 72, 694–706.PubMedCrossRefGoogle Scholar
  76. Lahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Hwang, S. F., McDonald, M. R., & Boyetchko, S. M. (2013). Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathoogy, 103, 245–254.CrossRefGoogle Scholar
  77. Lakshmanan, V., Kitto, S. L., Caplan, J. L., Hsueh, Y. H., Kearns, D. B., Wu, Y. S., & Bais, H. P. (2012). Microbe associated molecular patterns triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 160, 1642–1661.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., CholletImbert, M., & Jacques, P. (2005). Mycosubtilin over-production by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lee, K. J., Kamala-Kannan, S., Sub, H. S., Seong, C. K., & Lee, G. W. (2008). Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World Journal of Microbiology and Biotechnology, 24, 1139–1145.CrossRefGoogle Scholar
  80. Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48, 113–121.CrossRefGoogle Scholar
  81. Leeman, M., Den Ouden, F. M., van Pelt, J. A., Dirks, F. P. M., & Steijl, H. (1996). Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86, 149–155.CrossRefGoogle Scholar
  82. Leong, S. A., & Expert, D. (1989). Siderophores in plant-pathogen interactions. In T. Kosuge & E. W. Nester (Eds.), Plant-microbe interactions, molecular and genetic perspectives (Vol. 3, pp. 62–83). New York: McGraw-Hill.Google Scholar
  83. Lievens, K. H., van Rijsbergen, R., Leyns, F. R., Lambert, B., Tenning, P., Swings, J., & Joos, H. (1989). Dominant rhizosphere bacteria as a source for antifungal agents. Pesticide Science, 27, 141–154.CrossRefGoogle Scholar
  84. Liu, Y. Z., Chen, Z. Y., Liu, Y. F., Wang, X. Y., Luo, C. P., Nie, Y. F., & Wang, K. R. (2011). Enhancing bioefficacy of Bacillus subtilis with sodium bicarbonate for the control of ring rot in pear during storage. Biological Control, 57, 110–117.CrossRefGoogle Scholar
  85. Loeffler, W., Kratzer, W., Kremer, S., Kugler, M., Petersen, F., Jung, G., Rapp, C., & Tschen, J. S. M. (1990). Gegen Pilze wirksame Antibiotika der Bacillus subtilis-Gruppe. Forum Mikrobiologie, 3, 156–163.Google Scholar
  86. López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., & Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20, 207–217.PubMedCrossRefGoogle Scholar
  87. Losick, E., & Kolter, R. (2008). Ecology and genomics of Bacillus subtilis. Trends in Microbiology, 16, 269–275.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lynch, J. M. (1983). Soil biotechnology. Microbiological factors in crop productivity. London: Blackwell.Google Scholar
  89. Markland, S.M., Bais, H.P., & Kniel, K.E. (2013). Utilization of plant growth promoting rhizobacteria to inhibit growth of foodborne pathogens on plants. International Association for Food Protection Annual Meeting, Charlotte, NC, p 3–120.Google Scholar
  90. Martin, J. K. (1971). 14C labeled material leached from the rhizosphere of plants supplied with 14CO2. Australian Journal of Biological Sciences, 24, 1131–1142.CrossRefGoogle Scholar
  91. Mendoza, A. R., & Sikora, R. A. (2009). Biological control of Radopholus similis in banana by co-application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. BioControl, 54, 263–272.CrossRefGoogle Scholar
  92. Milner, J. L., Stohl, E. A., & Handelsman, J. (1996). Zwittermicin A resistance gene from Bacillus cereus. Journal of Bacteriology, 178, 4266–4272.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mora, I., Cabrefiga, J., & Montesinos, E. (2011). Antimicrobial peptide genes in Bacillus strains from plant environments. International Microbiology, 14, 213–223.PubMedGoogle Scholar
  94. Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An Iiturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90, 622–629.PubMedCrossRefGoogle Scholar
  95. Nakano, M. M., & Zuber, P. (1998). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52, 165–190.PubMedCrossRefGoogle Scholar
  96. Nandi, P., & Sen, G. P. (1953). An antifungal substance from a strain of B. subtilis. Nature, 172, 871–872.PubMedCrossRefGoogle Scholar
  97. Nelson, E. B. (1990). Exudate molecules initiating fungal responses to seeds and roots. Plant and Soil, 129, 61–73.CrossRefGoogle Scholar
  98. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.PubMedCrossRefGoogle Scholar
  99. Pal, K.K., & Gardener, M.S. (2006). Biological control of plant pathogens. The Plant Health Instructor, p 1–25.Google Scholar
  100. Parke, J. L. (1991). Root colonisation by indigenous and introduced microorganisms. In D. L. Keister & P. B. Cregan (Eds.), The rhizosphere and plant growth (pp. 33–42). Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  101. Peng, D., Li, S., Chen, C., & Zhou, M. (2014). Combined application of Bacillus subtilis NJ-18 with fungicides for control of sharp eyespot of wheat. Biological Control, 70, 28–34.CrossRefGoogle Scholar
  102. Piggot, P., & Hilbert, D. (2004). Sporulation of Bacillus subtilis. Current Opinion Microbiology, 7, 579–586.CrossRefGoogle Scholar
  103. Podile, R., & Lami, V. D. V. (1998). Seed bacterization with Bacillus subtilis AF1 increases phenylalanineammonia-lyase and reduces the Incidence of Fusarium wilt in pigeonpea. Journal of Phytopathology, 146, 255–259.CrossRefGoogle Scholar
  104. Priest, F. G. (1993). Systematics and ecology of Bacillus. In A. L. Sonenshein, J. A. Hoch, & R. Losick (Eds.), Bacillus subtilis and other gram-positive bacteria (pp. 3–16). Washington, DC: Amer Soc Microbiol Press.CrossRefGoogle Scholar
  105. Probanza, A., Mateos, J. L., Lucas, J. A., Ramos, B., de Felipe, M. R., & Gutierrez mañero, F. J. (2001). Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization and mycorrhizal infection. Microbial Ecology, 41, 140–148.PubMedCrossRefGoogle Scholar
  106. Pusey, P. L. (1990). Antibiosis as mode of action in post-harvest biological control. In C. Wilson & E. Chalutz (Eds.), Biological control of post-harvest diseases of fruits and vegetables, workshop proceedings (pp. 127–134). West Virginia: Shepherdstown.Google Scholar
  107. Rahman, M., & Jett, L. (2016). Evaluation of bio-fumigants and biological control agents for managing Verticillium wilt on tomato, 2015. Plant Disease Management Reports 10 (DOI: to be added).Google Scholar
  108. Rao, C. V., Gleaks, G. D., & Ordal, G. W. (2008). The three adaptation systems of Bacillus subtilis chemotaxis. Trends in Microbiology, 16, 480–487.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Roberts, P. D., Momol, M. T., Ritchie, L., Olson, S. M., Jones, J. B., & Balogh, B. (2008). Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Protection, 27, 1519–1526.CrossRefGoogle Scholar
  110. Ruckert, C., Blom, J., Chen, X., Reva, O., & Borriss, R. (2011). Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. Journal of Biotechnology, 155, 78–85.PubMedCrossRefGoogle Scholar
  111. Rudrappa, T. K., Czymmek, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547–1556.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). Hyattsville: Society of Nematologists. Seinhorst.Google Scholar
  114. Scherm, H., Ngugi, H. K., Savelle, A. T., & Edwards, J. R. (2004). Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biological Control, 29, 199–206.CrossRefGoogle Scholar
  115. Schisler, D. A., Slininger, P. J., Behle, R. W., & Jackson, M. A. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94, 1267–1271.PubMedCrossRefGoogle Scholar
  116. Schönbeck, F. U., Steiner, U., & Kraska, T. (1993). Induced resistance: Criteria, mechanisms, practical applications and estimation. Journal of Plant Diseases and Protection, 100, 541–557.Google Scholar
  117. Schrimsher, D.W. (2013). The studies of plant post resistance to the reniform nematode in upland cotton and the effects of Bacillus firmus GB -126 on plant parasitic nematodes. PhD thesis. Alabama, Auburn University. https://holocron.lib.auburn.edu/bitstream/handle/10415/3562/Schrimsher_Drew%20Thesis%2004192013.pdf?sequence=2
  118. Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., De Mason, D. A., & Hirsch, A. M. (2013). Bacillus simplex-A little known PGPB with anti-fungal activity alters pea legume root architecture and nodule morphology When coinoculated with Rhizobium leguminosarum bv. viciae. Agronomy, 3, 595–620.CrossRefGoogle Scholar
  119. Serrano, L., Manker, D., Brandi, F., & Cali, T. (2011). The use of Bacillus subtilis QST 713 and Bacillus pumilus QST 2808 as protectant bio-fungicides in conventional application programs for black leaf streak control. AgraQuest Inc., Davis, CA-EUA. Exportadora Bananera Noboa, Guayaquil, Ecuador.Google Scholar
  120. Siddiqui, Z. A., & Shakeel, U. (2007). Screening of Bacillus isolates for potential biocontrol of the wilt disease complex of pigeon pea (Cajanus cajan) under greenhouse and small-scale field conditions. Journal of Plant Pathology, 89, 179–183.Google Scholar
  121. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H. Y., Clardy, J., & Handelsman, J. (1994). Biological activities of two fungistatic antibiotics produced by Bacillus cereus Uw85. Applied and Environmental Microbiology, 60, 2023–2030.PubMedPubMedCentralGoogle Scholar
  122. Sivasakthi, S., Usharani, G., & Saranraj, P. (2013). Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens. and Bacillus subtilis : A review of African. Journal of Agricultural Research, 9, 1265–1277.Google Scholar
  123. Smith, K. P., Havey, M. J., & Handelsman, J. (1993). Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Diseases, 77, 139–142.CrossRefGoogle Scholar
  124. Staron, A., Finkeisen, D. E., & Mascher, T. (2011). Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 55, 515–525.PubMedCrossRefGoogle Scholar
  125. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.PubMedCrossRefGoogle Scholar
  126. Steiner, L. (1990). Charakterisierung der biologisch aktiven Komponenten des Resistenz induzierenden Kulturfiltrates von Bacillus subtilis. Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft, p 226–292.Google Scholar
  127. Stirling, G. R. (1984). Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology, 74, 55–60.CrossRefGoogle Scholar
  128. Sultan, M. (2012). Biological control of leaf pathogens of tomato plants by Bacillus subtilis (strain FZB24): antagonistic effects and induced plant resistance. PhD thesis. Germany: University of Bonn. http://hss.ulb.uni-bonn.de/2012/2961/2961.pdf
  129. Swain, M. R., Ray, R. C., & Nautiyal, C. S. (2008). Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest Yam (Dioscorea rotundata L.) pathogens. Current Microbiology, 57, 407–411.PubMedCrossRefGoogle Scholar
  130. Swinburne, T. R., Barr, J. G., & Brown, A. E. (1975). Production of antibiotics by Bacillus subtilis and their effect on fungal colonists of apple leaf scars. Transactions of the British Mycological Society, 65, 211–217.CrossRefGoogle Scholar
  131. Tang, W. H. (1994). Yield-Increasing Bacteria (YIB) and biocontrol of sheath blight of rice. In G. Osmond, M. H. Ryder, et al. (Eds.), Improving plant productivity with rhizosphere bacteria (pp. 267–273). Australia: CSIRO Division of Soils.Google Scholar
  132. Terefe, M., Tefera, T., & Sakhuja, P. K. (2009). Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. Journal of Invertebrate Pathology, 100, 94–99.PubMedCrossRefGoogle Scholar
  133. Tian, B., Yang, J., & Zhang, K. (2007). Bacteria used in the biological control of plant-parasitic nematodes: Populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61, 197–213.PubMedCrossRefGoogle Scholar
  134. Torrey, J. G. (1976). Root hormones and plant growth. Annual Review of Plant Physiology, 27, 435–459.CrossRefGoogle Scholar
  135. Touré, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96, 1151–1160.PubMedCrossRefGoogle Scholar
  136. Tutzun, S., & Kloepper, J. W. (1994). Induced systemic resistance by plant growth promoting rhizobacteria. In G. Osmond, M. H. Ryder, et al. (Eds.), Improving plant productivity with rhizosphere bacteria (pp. 104–109). Australia: CSIRO Division of Soils.Google Scholar
  137. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  138. Vasudeva, R. S., & Chakravarthi, B. P. (1954). The antibiotic action of Bacillus subtilis in relation to certain parasitic fungi, with special reference to Alternaría solani. Annals of Applied Biology, 41, 612–618.CrossRefGoogle Scholar
  139. Vivas, A., Azcòn, R., Biro, B., Barea, J. M., & Ruiz-Lozano, J. M. (2003). Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49, 577–588.PubMedCrossRefGoogle Scholar
  140. Waewthongrak, W., Leelasuphakul, W., & McCollum, G. (2014). Cyclic Lipopeptides from Bacillus subtilis ABS–S14 Elicit Defense-Related Gene Expression in Citrus Fruit. PLOS ONE http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109386
  141. Waewthongrak, W., Pisuchpen, S., & Leelasuphakul, W. (2015). Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology, 99, 44–49.CrossRefGoogle Scholar
  142. Warkentin D (2012) Bacillus subtilis, strain 713, Biofungicide: Soil applications for disease control, crop yield and quality enhancement. Nov. 6, 2012 MBAO, Maitland, FL. http://mbao.org/2012/12Warkentin.pdf
  143. Welbaum, G., Sturz, A. V., Dong, Z., & Nowak, J. (2004). Fertilizing soil microorganisms to improve productivity of agroecosystems. Critical Reviews in Plant Sciences, 23, 175–193.CrossRefGoogle Scholar
  144. Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.CrossRefGoogle Scholar
  145. Weller, D. M., & Thomashow, L. S. (1993). Microbial metabolites with biological activity against plant pathogens. In R. D. Lumsden & J. L. Vaughn (Eds.), Pest management: Biologically based technologies (pp. 173–180). Washington, DC: Amer Chem Soc.Google Scholar
  146. Whipps, J. M. (1997). Developments in the biological control of soil‐borne plant pathogens. Advances in Botanical Research, 26, 1–134.CrossRefGoogle Scholar
  147. Wilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 348, 320–325.PubMedCrossRefGoogle Scholar
  148. Xia, Y., Xie, S., Ma, X., Wu, H., Wang, X., & Gao, X. (2011). The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiology Letters, 322, 99–107.PubMedCrossRefGoogle Scholar
  149. Yang, D. J., Wang, B., Wang, J. X., Chen, Y., & Zhou, M. G. (2009). Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 51, 61–65.CrossRefGoogle Scholar
  150. Yap, C. A. (2013). Screening for nematicidal activities of Bacillus species against root knot nematode (Meloidogyne incognita). American Journal of Experimental Agriculture, 3, 794–805.CrossRefGoogle Scholar
  151. Yu, X., Ai, C., Li, X., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.CrossRefGoogle Scholar
  152. Zhang, J. X., Xue, A. G., & Tambong, J. T. (2009). Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Diseases, 93, 1317–1323.CrossRefGoogle Scholar
  153. Zimmer, J., Issonfon, I., Schmiedeknecht, G., & Bochow, H. (1998a). Populationsdynamik, Phytoeffektivität und antagonistische Wirksamkeit von Bacillus subtilis als Nutzbakterium. Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft, H. 357: 351.Google Scholar
  154. Zimmer J, Issonfon I, Schmiedeknecht G, & Bochow H (1998b) Population dynamics of Bacillus subtilis as biocontrol agent under controlled conditions. Med. Fac. Landbouww. Univ. Gent 63/2b: 489–495.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.WVU Extension Service, West Virginia UniversityMorgantownUSA

Personalised recommendations