Incremental and Directed Rule-Based Inference on RDFS

  • Jules Chevalier
  • Julien Subercaze
  • Christophe Gravier
  • Frédérique Laforest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9828)

Abstract

The Semantic Web contributes to the elicitation of knowledge from data, and leverages implicit knowledge through reasoning algorithms. The dynamic aspect of the Web pushes actual batch reasoning solutions, providing the best scalability so far, to upgrade towards incremental reasoning. This paradigm enables reasoners to handle new data as they arrive. In this paper we introduce Slider-p, an efficient incremental reasoner. It is designed to handle streaming expanding data with a growing background knowledge base. Directed reasoning implemented in Slider-p allows to influence the order of inferred triples. This feature, novel in the state of the art at the best of our knowledge, enables the adaptation of Slider-p’s behavior to answer at best queries as the reasoning process is not over. It natively supports \(\rho \)df and RDFS, and its architecture allows to extend it to more complex fragments with a minimal effort. Our experimentations show that it is able to influence the order of the inferred triples, prioritizing the inference of selected kinds of triples.

Keywords

Incremental reasoning Rule-based reasoning Directed inference 

References

  1. 1.
    Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental reasoning on streams and rich background knowledge. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bizer, C., Schultz, A.: The berlin sparql benchmark. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  3. 3.
    Chevalier, J., Subercaze, J., Gravier, C., Laforest, F.: Slider: an efficient incremental reasoner. In: SIGMOD, pp. 1081–1086. ACM (2015)Google Scholar
  4. 4.
    Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History Matters: incremental ontology reasoning using modules. In: Aberer, K. (ed.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 183–196. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  6. 6.
    Hoeksema, J., Kotoulas, S.: High-performance distributed stream reasoning using s4. In: ISWC (2011)Google Scholar
  7. 7.
    Jagadish, H., Agrawal, R., Ness, L.: A study of transitive closure as a recursion mechanism. In: SIGMOD (1987)Google Scholar
  8. 8.
    Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: Alani, H. (ed.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 232–247. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Snasel, V., Moravec, P., Pokorny, J.: WordNet ontology based model for web retrieval. In: Web Information Retrieval and Integration (2005)Google Scholar
  11. 11.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with WebPIE: calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jules Chevalier
    • 1
  • Julien Subercaze
    • 1
  • Christophe Gravier
    • 1
  • Frédérique Laforest
    • 1
  1. 1.Laboratoire Hubert Curien UMR 5516Univ Lyon, UJM-Saint-Etienne, CNRSSaint EtienneFrance

Personalised recommendations