Advertisement

Various Spatial Skills, Gender Differences, and Transferability of Spatial Skills

Chapter

Abstract

This chapter attempts to clarify the conceptual distinctions among terms that have been used interchangeably or generically in referring to a constellation of loosely defined spatial skills. In the first part of this chapter, distinctions between small-scale and large-scale spatial skills are elucidated, followed by clarifications of the conceptual terrains of spatial perception, mental rotation, spatial visualization, mental imagery, and visuospatial working memory, all of which are subcategories of small-scale spatial skills. In the second part of this chapter, studies reporting gender differences in various types of spatial skills defined in the first part of the chapter are reviewed, followed by a discussion of two main factors, i.e., gender differences in VSWM and strategy use, that contribute to gender differences in spatial skills. In the last part of this chapter, evidence supporting the intrinsic association between numerical magnitude and space, the predictive relationship between spatial skills and mathematical achievement, and evidence supporting trainability and transferability of spatial skills to mathematical domains is reviewed. This is followed by an outlook of future directions in spatial skills research.

Keywords

Spatial ability STEM Spatial perception Spatial visualization Gender differences Spatial skills Mathematical achievement Visuospatial working memory (VSWM) 

References

  1. Allen, G. L., Kirasic, K. C., Dobson, S. H., & Long, R. G. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22(3), 327–355. doi: 10.1016/S0160-2896(96)90026-4.CrossRefGoogle Scholar
  2. Bacon, A. M., Handley, S. J., Dennis, I., & Newstead, S. E. (2008). Reasoning strategies: The role of working memory and verbal-spatial ability. European Journal of Cognitive Psychology, 20(6), 1065–1086. doi: 10.1080/09541440701807559.CrossRefGoogle Scholar
  3. Baddeley, A. (1986). Working memory. New York: Clarendon Press/Oxford University Press.Google Scholar
  4. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi: 10.1038/nrn1201.CrossRefGoogle Scholar
  5. Baldwin, C. L., & Reagan, I. (2009). Individual differences in route-learning strategy and associated working memory resources. Human Factors, 51(3), 368–377. doi: 10.1177/0018720809338187.CrossRefGoogle Scholar
  6. Barratt, E. S. (1953). An analysis of verbal reports of solving spatial problems as an aid in defining spatial factors. The Journal of Psychology, 36(1), 17–25.CrossRefGoogle Scholar
  7. Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults’ working memory spans. Journal of Experimental Psychology: General, 133(1), 83–100. doi: 10.1037/0096-3445.133.1.83.CrossRefGoogle Scholar
  8. Bayliss, D. M., Jarrold, C., Baddeley, A. D., & Gunn, D. M. (2005). The relationship between short‐term memory and working memory: Complex span made simple? Memory, 13(3), 414–421. doi: 10.1080/09658210344000332.CrossRefGoogle Scholar
  9. Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239–263. doi: 10.1002/acp.1182.CrossRefGoogle Scholar
  10. Blough, P. M., & Slavin, L. K. (1987). Reaction time assessments of gender differences in visual-spatial performance. Perception & Psychophysics, 41(3), 276–281.CrossRefGoogle Scholar
  11. Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: Cognitive profiles and mental strategies. Applied Cognitive Psychology, 18(5), 519–532. doi: 10.1002/acp.1000.CrossRefGoogle Scholar
  12. Botella, J., Peña, D., Contreras, M. J., Shih, P., & Santacreu, J. (2009). Performance as a function of ability, resources invested, and strategy used. Journal of General Psychology, 136(1), 41–69. doi: 10.3200/GENP.136.1.41-70.CrossRefGoogle Scholar
  13. Butler, T., Imperato-McGinley, J., Pan, H., Voyer, D., Cordero, J., Zhu, Y., … Silbersweig, D. (2006). Sex differences in mental rotation: Top-down versus bottom-up processing RID E-6035-2011. Neuroimage, 32(1), 445–456. doi: 10.1016/j.neuroimage.2006.03.030.
  14. Campbell, J. I. (2005). Handbook of mathematical cognition. New York: Psychology Press.Google Scholar
  15. Capitani, E., Laiacona, M., & Ciceri, E. (1991). Sex differences in spatial memory: A reanalysis of block tapping long-term memory according to the short-term memory level. The Italian Journal of Neurological Sciences, 12(4), 461–466.CrossRefGoogle Scholar
  16. Carpenter, P. A., & Just, M. A. (1986). Spatial ability: An information processing approach to psychometrics. Advances in the Psychology of Human Intelligence, 3, 221–253.Google Scholar
  17. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge: Cambridge University Press.Google Scholar
  18. Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499–506. doi: 10.1037/0022-3514.85.3.499.CrossRefGoogle Scholar
  19. Case, R., Kurland, D. M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404.CrossRefGoogle Scholar
  20. Casey, M. B. (1996). Gender, sex, and cognition: Considering the interrelationship between biological and environmental factors. Learning and Individual Differences, 8(1), 39–53. doi: 10.1016/S1041-6080(96)90006-0.CrossRefGoogle Scholar
  21. Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A., & Copley, J. (2008). The development of spatial skills through interventions involving block building activities. Cognition and Instruction, 26(3), 269–309.CrossRefGoogle Scholar
  22. Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and numerical predictors of measurement performance: The moderating effects of community income and gender. Journal of Educational Psychology, 103(2), 296.CrossRefGoogle Scholar
  23. Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.Google Scholar
  24. Cavallini, E., Cornoldi, C., & Vecchi, T. (2009). The effects of age and professional expertise on working memory performance. Applied Cognitive Psychology, 23(3), 382–395. doi: 10.1002/acp.1467.CrossRefGoogle Scholar
  25. Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218–261. doi: 10.1037/a0014412.CrossRefGoogle Scholar
  26. Cheng, Y. L., & Mix, K. S. (2012). Spatial training improves children’s mathematics ability. Journal of Cognition and Development (just-accepted).Google Scholar
  27. Cherney, I. D., & Neff, N. L. (2004). Role of strategies and prior exposure in mental rotation. Perceptual and Motor Skills, 98(3), 1269–1282. doi: 10.2466/PMS.98.4.1269-1282.CrossRefGoogle Scholar
  28. Cherney, I. D., Bersted, K., & Smetter, J. (2014). Training spatial skills in men and women 1, 2. Perceptual & Motor Skills, 119(1), 82–99.CrossRefGoogle Scholar
  29. Clements-Stephens, A., Rimrodt, S. L., & Cutting, L. E. (2009). Developmental sex differences in basic visuospatial processing: Differences in strategy use? Neuroscience Letters, 449(3), 155–160. doi: 10.1016/j.neulet.2008.10.094.CrossRefGoogle Scholar
  30. Colom, R., Flores-Mendoza, C., Quiroga, M. Á., & Privado, J. (2005). Working memory and general intelligence: The role of short-term storage. Personality and Individual Differences, 39(5), 1005–1014. doi: 10.1016/j.paid.2005.03.020.CrossRefGoogle Scholar
  31. Colom, R., Quiroga, M. Á., Shih, P. C., Martínez, K., Burgaleta, M., Martínez-Molina, A., … Ramírez, I. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38(5), 497–505. doi: 10.1016/j.intell.2010.06.008.
  32. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329–340. doi: 10.1016/j.jenvp.2004.08.006.CrossRefGoogle Scholar
  33. Contreras, M. J., Rubio, V., Peña, D., & Santacreu, J. (2010). On the robustness of solution strategy classifications: Testing the stability of dynamic spatial tasks on a one-year test-retest basis. Journal of Individual Differences, 31(2), 68–73. doi: 10.1027/1614-0001/a000012.CrossRefGoogle Scholar
  34. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. doi: 10.1016/j.tics.2003.10.005.CrossRefGoogle Scholar
  35. Cooper, L. A. (1976). Demonstration of a mental analog of an external rotation. Perception & Psychophysics, 19(4), 296–302.CrossRefGoogle Scholar
  36. Cornoldi, C., Vecchia, R. D., & Tressoldi, P. E. (1995). Visuo-spatial working memory limitations in low visuo-spatial high verbal intelligence children. Journal of Child Psychology and Psychiatry, 36(6), 1053–1064. doi: 10.1111/j.1469-7610.1995.tb01350.x.CrossRefGoogle Scholar
  37. Cornoldi, C., Rigoni, F., Tressoldi, P. E., & Vio, C. (1999). Imagery deficits in nonverbal learning disabilities. Journal of Learning Disabilities, 32(1), 48–57.CrossRefGoogle Scholar
  38. Cornoldi, C., Marconi, F., & Vecchi, T. (2001). Visuospatial working memory in turner’s syndrome. Brain and Cognition, 46(1), 90–94.CrossRefGoogle Scholar
  39. Corsi, P. M. (1973). Human memory and the medial temporal region of the brain. Montreal: McGill University Libraries.Google Scholar
  40. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466.Google Scholar
  41. Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University Press.Google Scholar
  42. Delgado, A. R., & Prieto, G. (1997). Mental rotation as a mediator for sex-related differences in visualization. Intelligence, 24(2), 405–416. doi: 10.1016/S0160-2896(97)90057-X.CrossRefGoogle Scholar
  43. Della Sala, S., Baddeley, A. D., Gray, C., & Wilson, L. (1997). Visual patterns test: VPT. San Antonio: Harcourt.Google Scholar
  44. Duff, S. J., & Hampson, E. (2001). A sex differences on a novel spatial working memory task in humans. Brain and Cognition, 47(3), 470–493. doi: 10.1006/brcg.2001.1326.CrossRefGoogle Scholar
  45. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.Google Scholar
  46. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. doi: 10.1037/0096-3445.128.3.309.CrossRefGoogle Scholar
  47. Ericsson, K. A., & Charness, N. (1994). Expert performance. American Psychologist, 49(8), 725.CrossRefGoogle Scholar
  48. Ferrini-Mundy, J. (1987). Spatial training for calculus students: Sex differences in achievement and in visualization ability. Journal for Research in Mathematics Education, 18, 126–140.CrossRefGoogle Scholar
  49. Friedman, N. P., & Miyake, A. (2004). The reading span test and its predictive power for reading comprehension ability. Journal of Memory and Language, 51(1), 136–158. http://dx.doi.org.proxy-remote.galib.uga.edu/10.1016/j.jml.2004.03.008.CrossRefGoogle Scholar
  50. Froese, M., Tory, M., Evans, G., & Shrikhande, K. (2013). Evaluation of static and dynamic visualization training approaches for users with different spatial abilities. Visualization and Computer Graphics, IEEE Transactions on, 19(12), 2810–2817.CrossRefGoogle Scholar
  51. Geiser, C., Lehmann, W., & Eid, M. (2006). Separating “rotators” from “nonrotators” in the mental rotations test: A multigroup latent class analysis. Multivariate Behavioral Research, 41(3), 261–293. doi: 10.1207/s15327906mbr4103_2.CrossRefGoogle Scholar
  52. Geiser, C., Lehmann, W., Corth, M., & Eid, M. (2008). Quantitative and qualitative change in children’s mental rotation performance. Learning & Individual Differences, 18(4), 419–429. doi: 10.1016/j.lindif.2007.09.001.CrossRefGoogle Scholar
  53. Gluck, J., & Fitting, S. (2003). Spatial strategy selection: Interesting incremental information. International Journal of Testing, 3(3), 293–308.CrossRefGoogle Scholar
  54. Grossi, D., Matarese, V., & Orsini, A. (1980). Sex differences in adults’ spatial and verbal memory span. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 16(2), 339.CrossRefGoogle Scholar
  55. Guisande, M. A., Rodríguez, M. S., Almeida, L. S., Tinajero, C., & Páramo, M. F. (2008). Digits backward and the children’s embedded figures test among school-age Spanish children. Perceptual and Motor Skills, 107(3), 923–932. doi: 10.2466/PMS.107.7.923-932.CrossRefGoogle Scholar
  56. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241.CrossRefGoogle Scholar
  57. Gyselinck, V., Meneghetti, C., De Beni, R., & Pazzaglia, F. (2009). The role of working memory in spatial text processing: What benefit of imagery strategy and visuospatial abilities? Learning and Individual Differences, 19(1), 12–20. doi: 10.1016/j.lindif.2008.08.002.CrossRefGoogle Scholar
  58. Hamilton, C., Coates, R., & Heffernan, T. (2003). What develops in visuo-spatial working memory development? European Journal of Cognitive Psychology, 15(1), 43–69.CrossRefGoogle Scholar
  59. Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684.CrossRefGoogle Scholar
  60. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. doi: 10.1016/j.intell.2003.12.001.CrossRefGoogle Scholar
  61. Hegarty, M., Montello, D., Richardson, A., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. doi: 10.1016/j.intell.2005.09.005.CrossRefGoogle Scholar
  62. Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 61(5), 683–689. doi: 10.1080/17470210701822967.CrossRefGoogle Scholar
  63. Hirnstein, M., Bayer, U., & Hausmann, M. (2009). Sex-specific response strategies in mental rotation. Learning & Individual Differences, 19(2), 225–228. doi: 10.1016/j.lindif.2008.11.006.CrossRefGoogle Scholar
  64. Hitch, G. J. (1990). Developmental fractionation of working memory. In G. Vallar & T. Shallice (Eds.), Neuropsychological impairments of short-term memory (pp. 221–246). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Hitch, G. J., Halliday, S., Schaafstal, A. M., & Schraagen, J. M. C. (1988). Visual working memory in young children. Memory & Cognition, 16(2), 120–132.CrossRefGoogle Scholar
  66. Hitch, G. J., Towse, J. N., & Hutton, U. (2001). What limits children’s working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General, 130(2), 184.CrossRefGoogle Scholar
  67. Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children’s mathematical skills. European Journal of Cognitive Psychology, 20(2), 272–289. doi: 10.1080/09541440701612702.CrossRefGoogle Scholar
  68. Huttenlocher, J., & Presson, C. (1973). Mental rotation and the perspective problem. Cognitive Psychology, 4, 279–299.CrossRefGoogle Scholar
  69. Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11(3), 375–394.Google Scholar
  70. Iachini, T., Sergi, I., Ruggiero, G., & Gnisci, A. (2005). Gender differences in object location memory in a real three-dimensional environment. Brain and Cognition, 59(1), 52–59.CrossRefGoogle Scholar
  71. Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence; an essay on the construction of formal operational structures [De la logique de l’enfant à la logique de l’adolescent]. New York: Basic Books.Google Scholar
  72. Jordan, K., Wüstenberg, T., Heinze, H. J., Peters, M., & Jäncke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 40(13), 2397–2408.CrossRefGoogle Scholar
  73. Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35(3), 211–223. doi: 10.1016/j.intell.2006.07.009.CrossRefGoogle Scholar
  74. Klauer, K. C., & Zhao, Z. (2004). Double dissociations in visual and spatial short-term memory. Journal of Experimental Psychology: General, 133(3), 355.CrossRefGoogle Scholar
  75. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756. doi: 10.3758/BF03200477.CrossRefGoogle Scholar
  76. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.Google Scholar
  77. Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77–94.Google Scholar
  78. Laski, E. V., Casey, B. M., Yu, Q., Dulaney, A., Heyman, M., & Dearing, E. (2013). Spatial skills as a predictor of first grade girls’ use of higher level arithmetic strategies. Learning and Individual Differences, 23, 123–130.CrossRefGoogle Scholar
  79. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765–779.CrossRefGoogle Scholar
  80. Lawton, C. A., & Morrin, K. A. (1999). Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles, 40(1–2), 73–92. doi: 10.1023/A:1018830401088.CrossRefGoogle Scholar
  81. Levin, S. L., Mohamed, F. B., & Platek, S. M. (2005). Common ground for spatial cognition? A behavioral and fMRI study of sex differences in mental rotation and spatial working memory. Evolutionary Psychology, 3, 227–254.CrossRefGoogle Scholar
  82. Lejbak, L., Crossley, M., & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76(1), 191–196.Google Scholar
  83. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940.CrossRefGoogle Scholar
  84. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.CrossRefGoogle Scholar
  85. Logie, R. H. (2014). Visuo-spatial working memory. Hove: Psychology Press.Google Scholar
  86. Logie, R., & Pearson, D. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation RID C-6965-2009 RID C-4908-2008. European Journal of Cognitive Psychology, 9(3), 241–257. doi: 10.1080/713752559.CrossRefGoogle Scholar
  87. Lohman, D. F., & Kyllonen, P. C. (1983). Individual differences in solution strategy on spatial tasks. In Individual differences in cognition (pp. 105–135). New York: Academic.Google Scholar
  88. Lorenz, C., & Neisser, U. (1985). Factors of imagery and event recall. Memory & Cognition, 13(6), 494–500.CrossRefGoogle Scholar
  89. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279.CrossRefGoogle Scholar
  90. MacLeod, C. M., Jackson, R. A., & Palmer, J. (1986). On the relation between spatial ability and field dependence. Intelligence, 10(2), 141–151.CrossRefGoogle Scholar
  91. Mazard, A., Tzourio-Mazoyer, N., Crivello, F., Mazoyer, B., & Mellet, E. (2004). A PET meta-analysis of object and spatial mental imagery. European Journal of Cognitive Psychology, 16(5), 673–695. doi: 10.1080/09541440340000484.CrossRefGoogle Scholar
  92. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889.CrossRefGoogle Scholar
  93. Messick, S. (1984). The nature of cognitive styles: Problems and promise in educational practice. Educational Psychologist, 19(2), 59–74.Google Scholar
  94. Miles, C., Morgan, M. J., Milne, A. B., & Morris, E. D. (1996). Developmental and individual differences in visual memory span. Current Psychology, 15(1), 53–67.CrossRefGoogle Scholar
  95. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.CrossRefGoogle Scholar
  96. Mix, K. S., & Cheng, Y. (2012). In J. B. Benson (Ed.), The relation between space and math: Developmental and educational implications (pp. 197–243). San Diego: Elsevier Academic Press.Google Scholar
  97. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621–640. doi: 10.1037/0096-3445.130.4.621.CrossRefGoogle Scholar
  98. Naylor, Y. K., & McBeath, M. K. (2008). Gender differences in spatial perception of body tilt. Perception & Psychophysics, 70(2), 199–207. doi: 10.3758/PP.70.2.199.CrossRefGoogle Scholar
  99. Orsini, A., Chiacchio, L., Cinque, M., & Cocchiaro, C. (1986). Effects of age, education and sex on two tests of immediate memory: A study of normal subjects from 20 to 99 years of age. Perceptual and Motor Skills, 63, 727–732.CrossRefGoogle Scholar
  100. Pearson, J. L., & Ialongo, N. S. (1986). The relationship between spatial ability and environmental knowledg. Journal of Environmental Psychology, 6, 299–304.CrossRefGoogle Scholar
  101. Peña, D., Contreras, M. J., Shih, P. C., & Santacreu, J. (2008). Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task. Acta Psychologica, 128(1), 1–14. doi: 10.1016/j.actpsy.2007.09.005.CrossRefGoogle Scholar
  102. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn vandenberg and kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58. doi: 10.1006/brcg.1995.1032.CrossRefGoogle Scholar
  103. Piaget, J., & Inhelder, B. (1956). The child’s concept of space. London: Routledge & Paul.Google Scholar
  104. Piaget, J., & Inhelder, B. (1967). The child’s conception of space (trans: langdon, F.J. & lunzer, J.L.). New York.Google Scholar
  105. Pickering, S. J. (2001). The development of visuo-spatial working memory. Memory, 9(4–6), 423–432. doi: 10.1080/09658210143000182.CrossRefGoogle Scholar
  106. Postma, A., Izendoorn, R., Haan, D., & Edward, H. F. (1998). Sex differences in object location memory. Brain and Cognition, 36(3), 334–345. doi: 10.1006/brcg.1997.0974.CrossRefGoogle Scholar
  107. Postma, A., Jager, G., Kessels, R. P., Koppeschaar, H. P., & van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54(1), 24–34.CrossRefGoogle Scholar
  108. Presson, C. C. (1982). Strategies in spatial reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(3), 243–251. doi: 10.1037/0278-7393.8.3.243.Google Scholar
  109. Prime, D. J., & Jolicoeur, P. (2010). Mental rotation requires visual short-term memory: Evidence from human electric cortical activity. Journal of Cognitive Neuroscience, 22(11), 2437–2446. doi: 10.1162/jocn.2009.21337.CrossRefGoogle Scholar
  110. Quaiser-Pohl, C., Lehmann, W., & Eid, M. (2004). The relationship between spatial abilities and representations of large-scale space in children – a structural equation modeling analysis. Personality and Individual Differences, 36(1), 95–107. doi: 10.1016/S0191-8869(03)00071-0.CrossRefGoogle Scholar
  111. Quaiser-Pohl, C., Rohe, A. M., & Amberger, T. (2010). The solution strategy as an indicator of the developmental stage of preschool children’s mental-rotation ability. Journal of Individual Differences, 31(2), 95–100. doi: 10.1027/1614-0001/a000017.CrossRefGoogle Scholar
  112. Raabe, S., Höger, R., & Delius, J. D. (2006). Sex differences in mental rotation strategy. Perceptual & Motor Skills, 103(3), 917–930. doi: 10.2466/PMS.103.3.917-930.CrossRefGoogle Scholar
  113. Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural bases of strategy and skill in sentence-picture verification. Cognitive Psychology, 40(4), 261–295.CrossRefGoogle Scholar
  114. Richardson, J. T. (1999). Imagery. East Sussex: Psychology Press, Ltd.Google Scholar
  115. Robert, M., & Chevrier, E. (2003). Does men’s advantage in mental rotation persist when real three-dimensional objects are either felt or seen? Memory & Cognition, 31(7), 1136–1145.CrossRefGoogle Scholar
  116. Schultz, K. (1991). The contribution of solution strategy to spatial performance. Ottawa: Canadian Psychological Association. doi: 10.1037/h0084301.Google Scholar
  117. Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125(1), 4–27. doi: 10.1037/0096-3445.125.1.4.CrossRefGoogle Scholar
  118. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. doi: 10.1037/0022-0663.93.3.604.CrossRefGoogle Scholar
  119. Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29. doi: 10.1016/j.lindif.2013.03.010.CrossRefGoogle Scholar
  120. Sternberg, R. J., & Grigorenko, E. L. (1997). Are cognitive styles still in style? American Psychologist, 52(7), 700.CrossRefGoogle Scholar
  121. Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in spatial problem solving in a stem domain. Journal of Educational Psychology, 106(2), 390.CrossRefGoogle Scholar
  122. Strasser, I., Koller, I., Strauß, S., Csisinko, M., Kaufmann, H., & Glück, J. (2010). Use of strategy in a 3-dimensional spatial ability test. Journal of Individual Differences, 31(2), 74–77. doi: 10.1027/1614-0001/a000013.CrossRefGoogle Scholar
  123. Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434–455.CrossRefGoogle Scholar
  124. Thompson, W. L., Slotnick, S. D., Burrage, M. S., & Kosslyn, S. M. (2009). Two forms of spatial imagery: Neuroimaging evidence. Psychological Science, 20(10), 1245–1253. doi: 10.1111/j.1467-9280.2009.02440.x.CrossRefGoogle Scholar
  125. Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Chicago: The University of Chicago Press.Google Scholar
  126. Titze, C., Heil, M., & Jansen, P. (2008). Gender differences in the mental rotations test (MRT) are not due to task complexity. Journal of Individual Differences, 29(3), 130–133. doi: 10.1027/1614-0001.29.3.130.CrossRefGoogle Scholar
  127. Titze, C., Heil, M., & Jansen, P. (2010). Pairwise presentation of cube figures does not reduce gender differences in mental rotation performance. Journal of Individual Differences, 31(2), 101–105. doi: 10.1027/1614-0001/a000018.CrossRefGoogle Scholar
  128. Towse, J. N., Hitch, G. J., & Hutton, U. (2000). On the interpretation of working memory span in adults. Memory & Cognition, 28(3), 341–348.CrossRefGoogle Scholar
  129. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352.CrossRefGoogle Scholar
  130. Van Leijenhorst, L., Crone, E. A., & Van der Molen. (2007). Developmental trends for object and spatial working memory: A psychophysiological analysis. Child Development, 78(3), 987–1000. doi: 10.1111/j.1467-8624.2007.01045.x.CrossRefGoogle Scholar
  131. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604.CrossRefGoogle Scholar
  132. Vecchi, T., & Girelli, L. (1998). Gender differences in visuo-spatial processing: The importance of distinguishing between passive storage and active manipulation. Acta Psychologica, 99(1), 1–16.CrossRefGoogle Scholar
  133. Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology, 126, 37–51.CrossRefGoogle Scholar
  134. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92–114. doi: 10.1037/0096-1523.27.1.92.Google Scholar
  135. Voyer, D., & Doyle, R. A. (2010). Item type and gender differences on the mental rotations test. Learning & Individual Differences, 20(5), 469–472. doi: 10.1016/j.lindif.2010.04.010.CrossRefGoogle Scholar
  136. Voyer, D., & Saunders, K. A. (2004). Gender differences on the mental rotations test: A factor analysis. Acta Psychologica, 117(1), 79–94. doi: 10.1016/j.actpsy.2004.05.003.CrossRefGoogle Scholar
  137. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. doi: 10.1037/0033-2909.117.2.250.CrossRefGoogle Scholar
  138. Voyer, D., Postma, A., Brake, B., & Imperato-McGinley, J. (2007). Gender differences in object location memory: A meta-analysis. Psychonomic Bulletin & Review, 14(1), 23–38.CrossRefGoogle Scholar
  139. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835.CrossRefGoogle Scholar
  140. Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi: 10.1016/j.tics.2003.09.002.CrossRefGoogle Scholar
  141. Witkin, H. A., Dyk, R. B., Fattuson, H. F., Goodenough, D. R., & Karp, S. A. (1962). Psychological differentiation: Studies of development. New York: Wiley.CrossRefGoogle Scholar
  142. Wittig, M. A., & Allen, M. J. (1984). Measurement of adult performance on Piaget’s water horizontality task. Intelligence, 8(4), 305–313. doi: 10.1016/0160-2896(84)90014-X.CrossRefGoogle Scholar
  143. Wraga, M., Creem, S. H., & Proffitt, D. R. (2000). Perception-action dissociations of a walkable Müller-Lyer configuration. Psychological Science, 11(3), 239–243. doi: 10.1111/1467-9280.00248.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Ball State UniversityMuncieUSA

Personalised recommendations