Advertisement

Spatial Ability: Measurement and Development

  • Rita Nagy-KondorEmail author
Chapter

Abstract

Spatial visualization skills are essential for an expert to be successful in several disciplines. Spatial thinking has an important role in the teaching and learning of mathematics process and engineering studies; previous studies proved that this ability has positive correlations with geometry and mathematics education. Spatial visualisation ability is a prerequisite for success in technical education. Studies deal with spatial ability are vital in the field of mathematics, geometry and engineering, but also in chemistry, physics, anatomy and psychology, so measurement and development of spatial ability are very useful. Many studies have shown that there are correlations between various measures of spatial skills and performance in particular Science, Technology, Engineering and Mathematics (STEM) (Uttal DH, Cohen CA, Psychol Learn Motiv 57:147–181, 2012).

The measurement of spatial abilities is standardized by international tests, among which the Mental Cutting Test, Mental Rotation Test, Heinrich Spatial Visualization Test, Purdue Spatial Visualization Test and Purdue Spatial Visualization Test – Visualization of Rotation are widely used for testing the spatial ability. Interactive animation and virtual solids are promising tools for the training of spatial thinking and we can achieve better results in the understanding of the spatial relationships with the use of Dynamic Geometry Systems.

Keywords

STEM Spatial visualization ability Dynamic geometry systems Technical education Object rotations 

References

  1. Arıcı, S., & Aslan-Tutak, F. (2013). The effect of Origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education, 13(1), 179–200.Google Scholar
  2. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM, 34(3), 66–72.Google Scholar
  3. Ault, H. K., & John, S. (2010). Assessing and enhancing visualization skills of engineering students in Africa: A comprehensive study. Engineering Design Graphics Journal, 74(2), 12–20.Google Scholar
  4. Boon, P. Building houses. Freudenthal Institute, Utrecht University. http://www.fisme.uu.nl/toepassingen/00249/toepassing_wisweb.en.html
  5. Bosnyák, Á., & Nagy-Kondor, R. (2008). The spatial ability and spatial geometrical knowledge of university students majored in mathematics. Acta Didactica Universitatis Comenianae, 8, 1–25.Google Scholar
  6. Branoff, T. (1998). The effects of adding coordinate axes to a mental rotations task in measuring spatial visualization ability: An information-processing approach relating to teaching methods of undergraduate technical graphics education. Doctoral Dissertation, Norht Carolina State University.Google Scholar
  7. Branoff, T., & Connolly, P. (1999). The addition of coordinate axes to the purdue spatial visualization test – Visualization of rotations: A study at two universities. In: Proceedings of the American Society for engineering education annual conference. https://peer.asee.org%2Fthe-addition-of-coordinate-axes-to-the-purdue-spatialvisualization-test-visualization-of-rotations-a-study-at-two-universities.pdf&usg=AFQjCNFWaGCQOOCg6gslSXPZ5FbKHfVSA Google Scholar
  8. Budai, L. (2013). Improving problem-solving skills with the help of plane-space analogies. Center for Educational Policy Studies Journal, 3(4), 79–98.Google Scholar
  9. Carlbom, I., & Paciorek, J. (1978). Planar geometric projections and viewing transformations. ACM Computing Surveys (CSUR), 10(4), 465–502.CrossRefGoogle Scholar
  10. CEEB. (1939). Special aptitude test in spatial relations. New York: Developed by the College Entrance Examination Board.Google Scholar
  11. Chen, K. H. (1995). Validity studies of the Heinrich spatial visualization test. Doctoral Dissertation, Ohio State University, Ohio, USA.Google Scholar
  12. Clark, A. C., & Scales, A. Y. (2000). A study of current trends and issues related to technical/engineering design graphics. Engineering Design Graphics Journal, 64(1), 24–34.Google Scholar
  13. Czeglédy, I. (1988). The teaching of mathematical concept systems. Acta Academiae Pedagogicae Nyíregyháziensis/Matematika, 1, 105–113. (in Hungarian).Google Scholar
  14. Fenyvesi, K., Budinski, N., Lavicza, ZS. (2014). Problem solving with hands-on and digital tools: Connecting origami and GeoGebra in mathematics education. Conference proceedings, the closing conference of the project visuality & mathematics, Eger, Hungary, pp. 25–38. ISBN 978-615-5297-26-7.Google Scholar
  15. Ferguson, C., Ball, A., McDaniel, W., Anderson, R. (2008). A comparison of instructional methods for improving the spatial visualization ability of freshman technology seminar students. In: Proceedings, IAJC-IJME international conference, Nashville, TN. Retrieved from http://ijme.us/cd_08/PDF/37_IT305.pdf
  16. Field, B. (1999). A course in spatial visualization. Journal for Geometry and Graphics, 3(2), 201–209.Google Scholar
  17. Fuys, D., Geddes, D., Tischler, R. (1988). The van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education, Monograph No. 3.Google Scholar
  18. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
  19. Gerson, H. B. P., Sorby, S. A., Wysocki, A., & Baartmans, B. J. (2001). The development and assessment of multimedia software for improving 3-D spartial visualization skills. Computer Applications in Engineering Education, 9(2), 105–113.CrossRefGoogle Scholar
  20. Gorska, R., & Sorby, S. (2008). Testing instruments for the assessment of 3-d spatial skills. In: Proceedings of the 2008 American Society for Engineering Education annual conference & exposition. Retrieved from http://soa.asee.org/paper/conference/paper-view.cfm?id=9408
  21. Guay, R. B. (1977). Purdue spatial visualisation test: Rotations. West Lafayette: Purdue Research Foundation.Google Scholar
  22. Haanstra, F. H. (1994). Effects of art education on visual-spatial and aesthetic perception: Two meta-analysis. Groningen: Rijksuniversiteit Groningen.Google Scholar
  23. Heinrich, V. L. S. (1989). The development and validation of a spatial perception test for selection purposes. Master Science Dissertation, Ohio State University, Columbus, Ohio, USA.Google Scholar
  24. Hohenwarter, M., & Preiner, J. (2007). Dynamic mathematics with GeoGebra. The Journal of Online Mathematics and its Applications, 7.Google Scholar
  25. Hölzl, R. (1994). Im Zugmodus der Cabri-Geomètrie. Weinheim: Deutscher Studien-Verlag.Google Scholar
  26. Hölzl, R. (2001). Using dynamic geometry software to add constrast to geometric situations – A case study. International Journal of Computers for Mathematical Learning, 6(1), 63–86.CrossRefGoogle Scholar
  27. Kortenkamp, U. H. (1999). Foundations of dynamic geometry. Ph.D. thesis, Swiss Federal Institute of Technology Zürich.Google Scholar
  28. Kubus. http://armarium.hu/kubus.php (20. 10. 2015).
  29. Kurtulus, A. (2013). The effects of web–based interactive virtual tours on the development of prospective mathematics teachers’ spatial skills. Computers & Education, 63, 141–150.CrossRefGoogle Scholar
  30. Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6, 283–317.CrossRefGoogle Scholar
  31. Langley, D., Zadok, Y., & Arieli, R. (2014). Exploring spatial relationships: A strategy for guiding technological problem solving. Journal of Automation Mobile Robotics and Intelligent Systems, 8, 30–36.CrossRefGoogle Scholar
  32. Leopold, C., Gorska, R. A., & Sorby, S. A. (2001). International experiences in developing the spatial visualization abilities of engineering students. Journal for Geometry and Graphics, 5(1), 81–91.Google Scholar
  33. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A-meta analysis. Child Development, 56, 1479–1498.CrossRefGoogle Scholar
  34. Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395–405.CrossRefGoogle Scholar
  35. Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49(4), 344–351.CrossRefGoogle Scholar
  36. Maier, P. H. (1998). Spatial geometry and spatial ability – How to make solid geometry solid? In: Elmar Cohors-Fresenborg, K. Reiss, G. Toener, and H.-G. Weigand (Eds.), Selected papers from the annual conference of didactics of mathematics 1996, Osnabrueck, 63–75.Google Scholar
  37. Martín‐Gutiérrez, J., Gil, F. A., Contero, M., & Saorín, J. L. (2013). Dynamic three‐dimensional illustrator for teaching descriptive geometry and training visualisation skills. Computer Applications in Engineering Education, 21(1), 8–25.CrossRefGoogle Scholar
  38. McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86, 899–918.CrossRefGoogle Scholar
  39. Nagy-Kondor, R. (2006). The background of students’ performance. Teaching Mathematics and Computer Science, 4(2), 295–305.CrossRefGoogle Scholar
  40. Nagy-Kondor, R. (2008a). The results of a delayed test in descriptive geometry. International Journal for Technology in Mathematics Education, 15(3), 119–128.Google Scholar
  41. Nagy-Kondor, R. (2008b). Using dynamic geometry software at technical college. Mathematics and Computer Education, Fall, 3(42), 249–257.Google Scholar
  42. Nagy-Kondor, R. (2010). Spatial ability, descriptive geometry and dynamic geometry systems. Annales Mathematicae et Informaticae, 37, 199–210.Google Scholar
  43. Nagy-Kondor, R. (2014). Importance of spatial visualization skills in Hungary and Turkey: Comparative studies. Annales Mathematicae et Informaticae, 43, 171–181.Google Scholar
  44. Nagy-Kondor, R., & Sörös, C. (2012). Engineering students’ spatial abilities in Budapest and Debrecen. Annales Mathematicae et Informaticae, 40, 187–201.Google Scholar
  45. Nagy-Kondor, R., & Szíki, G. Á. (2012). “Basic Knowledge of Natural Sciences”: A new foundation subject at the Faculty of Engineering, University of Debrecen. Horizons of Mathematics, Physics and Computer Sciences, 41(2), 9–17. ISSN 1335–4981.Google Scholar
  46. Nagyné Kondor, R. (2008). Introducing dynamic geometry system into teaching of deschriptive geometry of mechanical engineers (in Hungarian). PhD Dissertation, University of Debrecen, Debrecen, Hungary.Google Scholar
  47. Németh, B., & Hoffmann, M. (2006). Gender differences in spatial visualization among engineering students. Annales Mathematicae et Informaticae, 33, 169–174.Google Scholar
  48. Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning. http://www.ex.uk/cimt/ijmt1/ijabout.htm
  49. Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: The North Library.Google Scholar
  50. Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22, 159–163.CrossRefGoogle Scholar
  51. Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a web-based virtual environment (WbVE). Automation in Construction, 14, 707–715.CrossRefGoogle Scholar
  52. Rafi, A., Samsudin, K. A., & Ismail, A. (2006). On improving spatial ability through computer-mediated engineering drawing instruction. Educational Technology & Society, 9(3), 149–159.Google Scholar
  53. Rotation tests, Freudenthal Institute, Utrecht University, http://www.fisme.science.uu.nl/toepassingen/03378/ (20. 10. 2015).
  54. Saito, T., Shiina, K., Makino, K., Suzuki, K., Jingu, T. (1995) Analysis of problem solving process and causes of error in a mental cutting test. Proceedings of the 2nd China-Japan joint conference on Graphics Education, Chengdu, China, pp. 259–264.Google Scholar
  55. Scribner, S. A. (2004). Novice drafters’ spatial visualization development: Influence of instructional methods and individual learning styles. Dissertation, Southern Illinois University, Carbondale.Google Scholar
  56. Seabla, R., & Santos, E. (2008). Evaluation of the spatial visualization ability of engineering students in a Brazilian engineering course. Journal for Geometry and Graphics, 12(1), 99–108.Google Scholar
  57. Séra, L., Kárpáti, A., & Gulyás, J. (2002). Spatial ability (in Hungarian). Pécs: Comenius Kiadó.Google Scholar
  58. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 604–614.CrossRefGoogle Scholar
  59. Shiina, K., Short, D. R., Miller, C. L., & Suzuki, K. (2001). Development of software to record solving process of a mental rotations test. Journal for Geometry and Graphics, 5(2), 193–202.Google Scholar
  60. Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth: Penguin Books Ltd.Google Scholar
  61. Sorby, S. (2001). A new and improved course for developing spatial visualization skills. Proceedings, ASEE annual conference. Google Scholar
  62. Sorby, S. A., Cubero, S., Pasha-Zaidi, N., & Karki H. (2014). Spatial skills of engineering students in the United Arab Emirates, QScience Proceedings (Engineering Leaders Conference 2014) 2015:32. http://dx.doi.org/10.5339/qproc.2015.elc2014.32
  63. Stachel, H. (2004). What is descriptive geometry for? http://citeseer.ist.psu.edu/642381.html.
  64. Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in dynamic geometry environments. International Journal of Computers for Mathematical Learning, 10, 31–47.CrossRefGoogle Scholar
  65. Szíki, G. Á., Juhász, Gy., Nagyné Kondor, R., Juhász, B. (2014). Computer program for the calculation of the performance parameters of pneumobiles. Proceedings of the International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2014), pp. 159–166. ISBN 978-963-473-751-3.Google Scholar
  66. Takaci, D., Zdravkovic, S., Rapajic, S. (2014). Problem solving with hands-on and digital tools: Connecting origami and GeoGebra in mathematics education. Conference proceedings, the closing conference of the project visuality & mathematics, Eger, Hungary, pp. 163–167. ISBN 978-615-5297-26-7.Google Scholar
  67. Tsutsumi, E., Shiina, K., Suzaki, A., Yamanouchi, K., Takaaki, S., & Suzuki, K. (1999). A mental cutting test on female students using a stereographic system. Journal for Geometry and Graphics, 3, 111–119.Google Scholar
  68. Turgut, M. (2015). Individual differences in the mental rotation skills of Turkish prospective teachers. IUMPST: The Journal, 5, 1–12. ISSN 2165-7874.Google Scholar
  69. Turgut, M., & Nagy-Kondor, R. (2013a). Comparison of Hungarian and Turkish prospective mathematics teachers’ mental cutting performances. Acta Didactica Universitatis Comenianae, 13, 47–58. ISBN 978-80-223-3507-2.Google Scholar
  70. Turgut, M., & Nagy-Kondor, R. (2013b). Spatial visualisation skills of Hungarian and Turkish prospective mathematics teachers. International Journal for Studies in Mathematics Education, 6(1), 168–183.Google Scholar
  71. Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why and how. Psychology of Learning and Motivation, 57, 147–181.CrossRefGoogle Scholar
  72. van Hiele, P. M. (1986). Structure and insight (A theory of mathematics education). Orlando: Academic.Google Scholar
  73. Vanderberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.CrossRefGoogle Scholar
  74. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293–305.CrossRefGoogle Scholar
  75. Vorstenbosch, M. A., Klaassen, T. P., Donders, A. R. T., Kooloos, J. G., Bolhuis, S. M., & Laan, R. F. (2013). Learning anatomy enhances spatial ability. Anatomical Sciences Education, 6(4), 257–262.CrossRefGoogle Scholar
  76. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.CrossRefGoogle Scholar
  77. Vygotsky, L. S. (1987). Thinking and speech. In R. W. Rieber & A. S. Carton (Eds.), The collected works of L. S. Vygotsky, Vol. 1. Problems of general psychology (pp. 39–285). New York: Plenum Press.Google Scholar
  78. Williams, C. B., Gero, J., Lee, Y., & Paretti, M. (2010). Exploring spatial reasoning ability and design cognition in undergraduate engineering students. Proceedings of the ASME 2010 international design engineering technical conference and computers and information in engineering conference, pp. 1–8.Google Scholar
  79. Yılmaz, H. B. (2009). On the development and measurement of spatial ability. International Electronic Journal of Elementary Education, 1(2), 83–96.Google Scholar
  80. Yue, J. (2009). Spatial visualization by realistic 3D views. Engineering Design Graphics Journal, 72(1), 1–8.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of DebrecenDebrecenHungary

Personalised recommendations