Gender Differences in Spatial Ability: Implications for STEM Education and Approaches to Reducing the Gender Gap for Parents and Educators

  • David ReillyEmail author
  • David L. Neumann
  • Glenda Andrews


While men and women do not differ in levels of general intelligence, gender differences do exist for more specific cognitive abilities. In particular, gender gaps in spatial ability are the largest of all gender differences in cognitive abilities. Research on gender differences in spatial ability is reviewed, including the role that parents and educators can play in encouraging these skills using formal instruction, at home and through play. A variety of psychobiosocial factors contribute to these gender differences. Research has shown that the development of spatial ability lays down the foundation for quantitative reasoning, a collective term for mathematical and science skills. For this reason, some researchers have claimed that they contribute to the underrepresentation of women in STEM-fields. However, like other cognitive skills, instruction and practice can yield dramatic improvements in performance on spatial tasks, reducing the magnitude of gender differences. There is also evidence of transfer effects and persistence across the passage of time. A growing number of educational psychologists have argued that early education of spatial intelligence is necessary as a matter of equity for all students, and that it may offer substantial benefits for the later development of mathematical and scientific skills across all ability levels. Parents and caregivers can also encourage children by using spatial language, providing children with enrichment activities that offer spatial learning experiences. Concerted efforts to address the gender gap in spatial ability has the potential to translate into a reduction of the gender gap in STEM, but further research is required to determine which types of training and at what intervals is most efficacious.


Visual-spatial ability Gender differences Spatial training STEM education Early education 


  1. Alexander, G. M., & Hines, M. (2002). Sex differences in response to children’s toys in nonhuman primates (Cercopithecus aethiops sabaeus). Evolution and Human Behavior, 23(6), 467–479. doi: 10.1016/S1090-5138(02)00107-1.CrossRefGoogle Scholar
  2. Alexander, G. M., Swerdloff, R., & Wang, C. (1988). Androgen-behavior correlation in hypogonadal and eugonadal men: Cognitive abilities. Hormones and Behavior, 33(2), 85–88. doi: 10.1006/hbeh.1998.1439.CrossRefGoogle Scholar
  3. Auyeung, B., Baron-Cohen, S., Ashwin, E., Knickmeyer, R., Taylor, K., Hackett, G., et al. (2009). Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychological Science, 20(2), 144–148. doi: 10.1111/j.1467-9280.2009.02279.x.CrossRefGoogle Scholar
  4. Baenninger, M., & Newcombe, N. S. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20(5), 327–344. doi: 10.1007/BF00287729.CrossRefGoogle Scholar
  5. Baenninger, M., & Newcombe, N. S. (1995). Environmental input to the development of sex-related differences in spatial and mathematical ability. Learning and Individual Differences, 7(4), 363–379. doi: 10.1016/1041-6080(95)90007-1.CrossRefGoogle Scholar
  6. Bem, S. L. (1981). Gender Schema Theory: A cognitive account of sex typing. Psychological Review, 88(4), 354–364. doi: 10.1037/0033-295X.88.4.354.CrossRefGoogle Scholar
  7. Berenbaum, S. A., & Beltz, A. M. (2011). Sexual differentiation of human behavior: Effects of prenatal and pubertal organizational hormones. Frontiers in Neuroendocrinology, 32(2), 183–200. doi: 10.1016/j.yfrne.2011.03.001.CrossRefGoogle Scholar
  8. Blakemore, J. E. O. (2003). Children’s beliefs about violating gender norms: Boys shouldn’t look like girls, and girls shouldn’t act like boys. Sex Roles, 48(9–10), 411–419.CrossRefGoogle Scholar
  9. Blakemore, J. E. O., & Centers, R. E. (2005). Characteristics of boys’ and girls’ toys. Sex Roles, 53(9–10), 619–633. doi: 10.1007/s11199-005-7729-0.CrossRefGoogle Scholar
  10. Blüchel, M., Lehmann, J., Kellner, J., & Jansen, P. (2013). The improvement in mental rotation performance in primary school-aged children after a two-week motor-training. Educational Psychology, 33(1), 75–86. doi: 10.1080/01443410.2012.707612.CrossRefGoogle Scholar
  11. Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial Visualization and geometry knowledge of students. RMLE Online: Research in Middle Level Education, 32(7), 1–12.CrossRefGoogle Scholar
  12. Bornstein, M. H. (2011). The mind of the preschool child: The intelligence-school interface. In O. A. Barbarin & B. H. Wasik (Eds.), Handbook of child development and early education: Research to pratice (pp. 123–142). New York: Guilford Press.Google Scholar
  13. Bratko, D. (1996). Twin study of verbal and spatial abilities. Personality and Individual Differences, 21(4), 621–624. doi: 10.1016/0191-8869(96)00091-8.CrossRefGoogle Scholar
  14. Buss, D. M. (1995). Psychological sex differences: Origins through sexual selection. American Psychologist, 50(3), 164–168. doi: 10.1037//0003-066x.50.3.164.CrossRefGoogle Scholar
  15. Buss, D. M. (2015). Evolutionary psychology: The new science of the mind. Boston: Pearson.Google Scholar
  16. Bussey, K., & Bandura, A. (1999). Social cognitive theory of gender development and differentiation. Psychological Review, 100, 676–713. doi: 10.1037/0033-295X.106.4.676.CrossRefGoogle Scholar
  17. Calabrese, L., & Marucci, F. S. (2006). The influence of expertise level on the visuo-spatial ability: Differences between experts and novices in imagery and drawing abilities. Cognitive Processing, 7(1), 118–120. doi: 10.1007/s10339-006-0094-2.CrossRefGoogle Scholar
  18. Caldera, Y. M., Huston, A. C., & Marion, O. B. (1989). Social interactions and play patterns of parents and toddlers with feminine, masculine, and neutral toys. Child Development, 60(1), 70–76. doi: 10.1111/j.1467-8624.1989.tb02696.x.CrossRefGoogle Scholar
  19. Caldera, Y. M., Mc Culp, A. D., O’Brien, M., Truglio, R. T., Alvarez, M., & Huston, A. C. (1999). Children’s play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23(4), 855–872.CrossRefGoogle Scholar
  20. Caplan, P. J., & Caplan, J. B. (1994). Thinking critically about research on sex and gender. New York: Harper Collins.Google Scholar
  21. Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? American Psychologist, 40(7), 786–799. doi: 10.1037/0003-066X.40.7.786.CrossRefGoogle Scholar
  22. Carrol, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.CrossRefGoogle Scholar
  23. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705. doi: 10.1037/0012-1649.31.4.697.CrossRefGoogle Scholar
  24. Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669–680. doi: 10.1037/0012-1649.33.4.669.CrossRefGoogle Scholar
  25. Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218–261. doi: 10.1037/a0014412.CrossRefGoogle Scholar
  26. Chan, D. W. (2007). Gender differences in spatial ability: Relationship to spatial experience among Chinese gifted students in Hong Kong. Roeper Review, 29(4), 277–282.CrossRefGoogle Scholar
  27. Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11. doi: 10.1080/15248372.2012.725186.CrossRefGoogle Scholar
  28. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Earlbaum Associates.Google Scholar
  29. Collaer, M. L., Reimers, S., & Manning, J. T. (2007). Visuospatial performance on an internet line judgment task and potential hormonal markers: Sex, sexual orientation, and 2D:4D. Archives of Sexual Behavior, 36(2), 177–192. doi: 10.1007/s10508-006-9152-1.CrossRefGoogle Scholar
  30. Contreras, M. J., Colom, R., Shih, P. C., Álava, M. J., & Santacreu, J. (2001). Dynamic spatial performance: Sex and educational differences. Personality and Individual Differences, 30(1), 117–126. doi: 10.1016/S0191-8869(00)00015-5.CrossRefGoogle Scholar
  31. Contreras, M. J., Rubio, V. J., Peña, D., Colom, R., & Santacreu, J. (2007). Sex differences in dynamic spatial ability: The unsolved question of performance factors. Memory and Cognition, 35(2), 297–303. doi: 10.3758/BF03193450.CrossRefGoogle Scholar
  32. National Research Council. (2006). Learning to think spatially: Geographic Information Systems (GIS) as a support system in the K-12 curriculum. Washington, DC: National Academies Press.Google Scholar
  33. Davison, K. K., & Susman, E. J. (2001). Are hormone levels and cognitive ability related during early adolescence. International Journal of Behavioral Development, 25(5), 416–428. doi: 10.1080/016502501316934842.CrossRefGoogle Scholar
  34. Doyle, R. A., Voyer, D., & Cherney, I. D. (2012). The relation between childhood spatial activities and spatial abilities in adulthood. Journal of Applied Developmental Psychology, 33, 112–120. doi: 10.1016/j.appdev.2012.01.002.CrossRefGoogle Scholar
  35. Eagly, A. H., & Wood, W. (1999). The origins of sex differences in human behavior: Evolved dispositions versus social roles. American Psychologist, 54(6), 408–423. doi: 10.1037/0003-066X.54.6.408.CrossRefGoogle Scholar
  36. Eccles, J. S., Jacobs, J. E., & Harold, R. D. (1990). Gender role stereotypes, expectancy effects, and parents’ socialization of gender differences. Journal of Social Issues, 46(2), 183–201. doi: 10.1111/j.1540-4560.1990.tb01929.x.CrossRefGoogle Scholar
  37. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. doi: 10.1037/a0018053.CrossRefGoogle Scholar
  38. Falter, C., Arroyo, M., & Davis, G. (2006). Testosterone: Activation or organization of spatial cognition? Biological Psychology, 73(2), 132–140. doi: 10.1016/j.biopsycho.2006.01.011.CrossRefGoogle Scholar
  39. Ferguson, C. J. (2007). The good, the bad and the ugly: A meta-analytic review of positive and negative effects of violent video games. Psychiatric Quarterly, 78(4), 309–316. doi: 10.1007/s11126-007-9056-9.CrossRefGoogle Scholar
  40. Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1–12. doi: 10.1016/j.lindif.2015.02.007.CrossRefGoogle Scholar
  41. Ferrara, K., Hirsh-Pasek, K., Newcombe, N. S., Golinkoff, R. M., & Lam, W. S. (2011). Block talk: Spatial language during block play. Mind, Brain, and Education, 5(3), 143–151. doi: 10.1111/j.1751-228X.2011.01122.x.CrossRefGoogle Scholar
  42. Festl, R., Scharkow, M., & Quandt, T. (2013). Problematic computer game use among adolescents, younger and older adults. Addiction, 108(3), 592–599. doi: 10.1111/add.12016.CrossRefGoogle Scholar
  43. French, J. W., Ekstrom, R. B., & Price, L. A. (1963). Manual for kit of reference tests for cognitive factors. Princeston: Educational Testing Service.Google Scholar
  44. Frick, A., Daum, M. M., Walser, S., & Mast, F. W. (2009). Motor processes in children’s mental rotation. Journal of Cognition and Development, 10(1–2), 18–40. doi: 10.1080/15248370902966719.CrossRefGoogle Scholar
  45. Furnham, A. (2000). Parents’ estimates of their own and their children’s multiple intelligences. British Journal of Developmental Psychology, 18(4), 583–594. doi: 10.1348/026151000165869.CrossRefGoogle Scholar
  46. Furnham, A., & Akande, A. (2004). African parents’ estimates of their own and their children’s multiple intelligences. Current Psychology: Developmental, Learning, Personality, Social, 22, 281–294.CrossRefGoogle Scholar
  47. Furnham, A., & Thomas, C. (2004). Parents’ gender and personality and estimates of their own and their children’s intelligence. Personality and Individual Differences, 37(5), 887–903.CrossRefGoogle Scholar
  48. Furnham, A., Reeves, E., & Budhani, S. (2002). Parents think their sons are brighter than their daughters: Sex differences in parental self-estimations and estimations of their children’s multiple intelligences. The Journal of Genetic Psychology, 163(1), 24–39. doi: 10.1080/00221320209597966.CrossRefGoogle Scholar
  49. Geary, D. C. (1995). Sexual selection and sex differences in spatial cognition. Learning and Individual Differences, 7(4), 289–301. doi: 10.1016/1041-6080(95)90003-9.CrossRefGoogle Scholar
  50. Gill, D., & Kamphoff, C. (2010). Gender in sport and exercise psychology. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (pp. 563–585). New York: Springer.CrossRefGoogle Scholar
  51. Goldman, A. D., & Penner, A. M. (2014). Exploring international gender differences in mathematics self-concept. International Journal of Adolescence and Youth, 1–16. doi: 10.1080/02673843.2013.847850.
  52. Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165. doi: 10.1126/science.1154094.CrossRefGoogle Scholar
  53. Halari, R., Sharma, T., Hines, M., Andrew, C., Simmons, A., & Kumari, V. (2006). Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Experimental Brain Research, 169(1), 1–14. doi: 10.1007/s00221-005-0118-7.CrossRefGoogle Scholar
  54. Halpern, D. F. (2000). Sex differences in cognitive abilities (3rd ed.). Mahwah: Erlbaum.Google Scholar
  55. Halpern, D. F. (2007). Science, sex, and good sense: Why women are underrepresented in some areas of science and math. In S. J. Ceci (Ed.), Why aren’t more women in science?: Top researchers debate the evidence (pp. 121–130). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  56. Halpern, D. F. (2011). Sex differences in cognitive abilities (4th ed.). Mahwah: Erlbaum.Google Scholar
  57. Halpern, D. F., & Collaer, M. L. (2005). Sex differences in visuospatial abilities: More than meets the eye. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 170–212). New York: Cambridge University Press.CrossRefGoogle Scholar
  58. Halpern, D. F., & Tan, U. (2001). Stereotypes and steroids: Using a psychobiosocial model to understand cognitive sex differences. Brain and Cognition, 45(3), 392–414. doi: 10.1006/brcg.2001.1287.CrossRefGoogle Scholar
  59. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8(1), 1–51. doi: 10.1111/j.1529-1006.2007.00032.x.Google Scholar
  60. Halpern, D. F., Straight, C. A., & Stephenson, C. L. (2011). Beliefs about cognitive gender differences: Accurate for direction, underestimated for size. Sex Roles, 64(5–6), 336–347. doi: 10.1007/s11199-010-9891-2.CrossRefGoogle Scholar
  61. Hancock, P., & Rausch, R. (2010). The effects of sex, age, and interval duration on the perception of time. Acta Psychologica, 133(2), 170–179. doi: 10.1016/j.actpsy.2009.11.005.CrossRefGoogle Scholar
  62. Hassett, J. M., Siebert, E. R., & Wallen, K. (2008). Sex differences in rhesus monkey toy preferences parallel those of children. Hormones and Behavior, 54(3), 359–364. doi: 10.1016/j.yhbeh.2008.03.008.CrossRefGoogle Scholar
  63. Hausmann, M., Slabbekoorn, D., Van Goozen, S. H. M., Cohen-Kettenis, P. T., & Gunturkun, O. (2000). Sex hormones affect spatial abilities during the menstrual cycle. Behavioral Neuroscience, 114(6), 1245–1250. doi: 10.1037/0735-7044.114.6.1245.CrossRefGoogle Scholar
  64. Hausmann, M., Schoofs, D., Rosenthal, H. E. S., & Jordan, K. (2009). Interactive effects of sex hormones and gender stereotypes on cognitive sex differences – A psychobiosocial approach. Psychoneuroendocrinology, 34(3), 389–401. doi: 10.1016/j.psyneuen.2008.09.019.CrossRefGoogle Scholar
  65. Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269(5220), 41–45. doi: 10.1126/science.7604277.CrossRefGoogle Scholar
  66. Hier, D. B., & Crowley, W. F., Jr. (1982). Spatial ability in androgen-deficient men. New England Journal of Medicine, 306(20), 1202–1205. doi: 10.1056/NEJM198205203062003.CrossRefGoogle Scholar
  67. Hines, M. (2010). Sex-related variation in human behavior and the brain. Trends in Cognitive Sciences, 14(10), 448–456. doi: 10.1016/j.tics.2010.07.005.CrossRefGoogle Scholar
  68. Hines, M. (2015a). Early androgen exposure and human gender development. Biology of Sex Differences, 6(1), 1–10. doi: 10.1186/s13293-015-0022-1.CrossRefGoogle Scholar
  69. Hines, M. (2015b). Gendered development. In R. M. Lerner & M. E. Lamb (Eds.), Handbook of child development and developmental science (7th ed.). Hoboken: Wiley.Google Scholar
  70. Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educational Psychology Review, 22(3), 245–269. doi: 10.1007/s10648-010-9126-7.CrossRefGoogle Scholar
  71. Hromatko, I., & Tadinac, M. (2007). Testosterone levels influence spatial ability: Further evidence for curvilinear relationship. Review of Psychology, 13(1), 27–34.Google Scholar
  72. Hunt, E., Pellegrino, J. W., Frick, R. W., Farr, S. A., & Alderton, D. (1988). The ability to reason about movement in the visual field. Intelligence, 12(1), 77–100. doi: 10.1016/0160-2896(88)90024-4.CrossRefGoogle Scholar
  73. Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65(1), 373–398. doi: 10.1146/annurev-psych-010213-115057.CrossRefGoogle Scholar
  74. Hyde, J. S., & Lindberg, S. M. (2007). Facts and assumptions about the nature of gender differences and the implications for gender equity. In S. S. Klein (Ed.), Handbook for achieving gender equity through education (2nd ed., pp. 19–32). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  75. Ioannidis, J. P. A., Munafò, M. R., Fusar-Poli, P., Nosek, B. A., & David, S. P. (2014). Publication and other reporting biases in cognitive science: Detection, prevalence, and prevention. Trends in Cognitive Sciences, 18(5), 235–241. 0.1016/j.tics.2014.02.010.CrossRefGoogle Scholar
  76. Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J. S., & Wigfield, A. (2002). Changes in children’s self-competence and values: Gender and domain differences across grades one through twelve. Child Development, 73(2), 509–527. doi: 10.1111/1467-8624.00421.CrossRefGoogle Scholar
  77. Janowsky, J., Oviatt, S., & Orwoll, E. (1994). Testosterone influences spatial cognition in older men. Behavioral Neuroscience, 108(2), 325–332. doi: 10.1037/0735-7044.108.2.325.CrossRefGoogle Scholar
  78. Jansen, P., Titze, C., & Heil, M. (2009). The influence of juggling on mental rotation performance. International Journal of Sport Psychology, 40(2), 351–359.Google Scholar
  79. Jansen, P., Lange, L., & Heil, M. (2011). The influence of juggling on mental rotation performance in children. Biomedical Human Kinetics, 3, 18–22. doi: 10.2478/v10101-011-0005-6.CrossRefGoogle Scholar
  80. Janssen, A. B., & Geiser, C. (2012). Cross-cultural differences in spatial abilities and solution strategies – An investigation in Cambodia and Germany. Journal of Cross-Cultural Psychology, 43(4), 533–557. doi: 10.1177/0022022111399646.CrossRefGoogle Scholar
  81. Jirout, J. J., & Newcombe, N. S. (2014). Mazes and maps: Can young children find their way? Mind, Brain, and Education, 8(2), 89–96. doi: 10.1111/mbe.12048.CrossRefGoogle Scholar
  82. Jirout, J. J., & Newcombe, N. S. (2015). Building blocks for developing spatial skills evidence from a large, representative US sample. Psychological Science, 26(3), 302–310. doi: 10.1177/0956797614563338.CrossRefGoogle Scholar
  83. Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403–411. doi: 10.1037/0735-7044.117.3.403.CrossRefGoogle Scholar
  84. Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Neurobiology, 6(2), 259–263. doi: 10.1016/s0959-4388(96)80081-x.CrossRefGoogle Scholar
  85. Kimura, D. (2000). Sex and cognition. Cambridge, MA: MIT Press.Google Scholar
  86. Kimura, D., & Hampson, E. (1994). Cognitive pattern in men and women is influenced by fluctuations in sex hormones. Current Directions in Psychological Science, 3(2), 57–61. doi: 10.1111/1467-8721.ep10769964.CrossRefGoogle Scholar
  87. Kohlberg, L., & Ullian, D. (1974). Stages in the development of psycho-sexual concepts and attitudes. In R. C. Friedman, R. M. Richart, & R. Vande Wiele (Eds.), Sex differences in behavior (pp. 209–222). New York: Wiley.Google Scholar
  88. Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579. doi: 10.1080/15326900701399897.CrossRefGoogle Scholar
  89. Krisztián, Á., Bernáth, L., Gombos, H., & Vereczkei, L. (2015). Developing numberical ability in children with mathematical difficulties using origami. Perceptual and Motor Skills, 121(1), 233–243. doi: 10.2466/24.10.PMS.121c16x1.CrossRefGoogle Scholar
  90. Lachance, J. A., & Mazzocco, M. M. (2006). A longitudinal analysis of sex differences in math and spatial skills in primary school age children. Learning and Individual Differences, 16(3), 195–216. doi: 10.1016/j.lindif.2005.12.001.CrossRefGoogle Scholar
  91. Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9–10), 389–401. doi: 10.1023/A:1021668724970.CrossRefGoogle Scholar
  92. Leaper, C. (2005). Parenting girls and boys. In M. H. Bornstein (Ed.), Handbook of parenting (Vol. 1, pp. 189–225). Mahwah: Lawrence Erlbaum.Google Scholar
  93. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35(4), 940–949.CrossRefGoogle Scholar
  94. Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PLoS ONE, 8(7), e70160.CrossRefGoogle Scholar
  95. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479–1498. doi: 10.2307/1130467.CrossRefGoogle Scholar
  96. Lord, T., & Leonard, B. (1997). Comparing scores on spatial-perception tests for intercollegiate athletes and nonathletes. Perceptual and Motor Skills, 84(1), 299–306. doi: 10.2466/pms.1997.84.1.299.CrossRefGoogle Scholar
  97. Lunneborg, P. W. (1982). Sex differences in self-assessed, everyday spatial abilities. Perceptual and Motor Skills, 55(1), 200–202. doi: 10.2466/pms.1982.55.1.200.CrossRefGoogle Scholar
  98. Lynn, R., & Mikk, J. (2009). Sex differences in reading achievement. Trames, 13(1), 3–13. doi: 10.3176/tr.2009.1.01.CrossRefGoogle Scholar
  99. Lytton, H., & Romney, D. M. (1991). Parents’ differential socialization of boys and girls: A meta-analysis. Psychological Bulletin, 109(2), 267–296. doi: 10.1037/0033-2909.109.2.267.CrossRefGoogle Scholar
  100. Martin, C. L., & Ruble, D. N. (2004). Children’s search for gender cues: Cognitive perspectives on gender development. Current Directions in Psychological Science, 13(2), 67–70. doi: 10.1111/j.0963-7214.2004.00276.x.CrossRefGoogle Scholar
  101. Martin, C. L., & Ruble, D. N. (2010). Patterns of gender development. Annual Review of Psychology, 61(1), 353–381. doi: 10.1146/annurev.psych.093008.100511.CrossRefGoogle Scholar
  102. Meece, J. L., Glienke, B. B., & Burg, S. (2006). Gender and motivation. Journal of School Psychology, 44(5), 351–373. doi: 10.1016/j.jsp.2006.04.004.CrossRefGoogle Scholar
  103. Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152. doi: 10.1016/j.lindif.2012.03.012.CrossRefGoogle Scholar
  104. Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 1063–1066. doi: 10.1111/j.1467-9280.2008.02200.x.CrossRefGoogle Scholar
  105. Moreau, D., Mansy-Dannay, A., Clerc, J., & Guerrien, A. (2011). Spatial ability and motor performance: Assessing mental rotation processes in elite and novice athletes. International Journal of Sport Psychology, 42(6), 525–547.Google Scholar
  106. Moreau, D., Clerc, J., Mansy-Dannay, A., & Guerrien, A. (2015). Enhancing spatial ability through sport practice. Journal of Individual Differences, 33(2), 83–88. doi: 10.1027/1614-0001/a000075.CrossRefGoogle Scholar
  107. Nash, S. C. (1979). Sex role as a mediator of intellectual functioning. In M. A. Wittig & A. C. Petersen (Eds.), Sex-related differences in cognitive functioning: Developmental issues (pp. 263–302). New York: Academic.Google Scholar
  108. Newcombe, N. S. (2007). Taking science seriously: Straight thinking about spatial sex differences. In S. J. Ceci (Ed.), Why aren’t more women in science?: Top researchers debate the evidence (pp. 69–77). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  109. Newcombe, N. S., & Frick, A. (2010). Early education for spatial intelligence: Why, what, and how. Mind, Brain, and Education, 4(3), 102–111. doi: 10.1111/j.1751-228X.2010.01089.x.CrossRefGoogle Scholar
  110. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math= male, me= female, therefore math≠ me. Journal of Personality and Social Psychology, 83(1), 44–59. doi: 10.1037//0022-3514.83.1.44.CrossRefGoogle Scholar
  111. Notarnicola, A., Maccagnano, G., Pesce, V., Tafuri, S., Novielli, G., & Moretti, B. (2014). Visual-spatial capacity: Gender and sport differences in young volleyball and tennis athletes and non-athletes. BMC Research Notes, 7(57), 1–5. doi: 10.1186/1756-0500-7-57.Google Scholar
  112. Nuttall, R. L., Casey, M. B., & Pezaris, E. (2005). Spatial ability as a mediator of gender differences on mathematics tests: A biological-environmental framework. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 121–142). Cambridge: Cambridge University Press.Google Scholar
  113. Pasterski, V. L., Geffner, M. E., Brain, C., Hindmarsh, P., Brook, C., & Hines, M. (2005). Prenatal hormones and postnatal socialization by parents as determinants of male-typical toy play in girls with congenital adrenal hyperplasia. Child Development, 76(1), 264–278. doi: 10.1111/j.1467-8624.2005.00843.x.CrossRefGoogle Scholar
  114. Pease, A., & Pease, B. (2001). Why men don’t listen and women can’t read maps: How we’re different and what to do about it. London: Orion Books.Google Scholar
  115. Peters, M., & Battista, C. (2008). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and Cognition, 66, 260–264. doi: 10.1016/j.bandc.2007.09.003.CrossRefGoogle Scholar
  116. Peters, M., Lehmann, W., Takahira, S., Takeuchi, Y., & Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N=3367): Overall sex differences and the role of academic program in performance. Cortex, 42(7), 1005–1014. doi: 10.1016/S0010-9452(08)70206-5.CrossRefGoogle Scholar
  117. Piaget, J. (1951). Play, Dreams and Imitation in Childhood. (C. Gattegno & F. M. Hodgson, Trans.). New York: Routledge and Kegan Paul Ltd.Google Scholar
  118. Pietsch, S., & Jansen, P. (2012). The relationship between coordination skill and mental rotation ability. In S. K. C. Stachniss & D. H. Uttal (Eds.), Spatial cognition VIII (pp. 173–181). Kloster Seeon: Springer.CrossRefGoogle Scholar
  119. Prinzel, L. J., III, & Freeman, F. G. (1995). Sex differences in visuo-spatial ability: Task difficulty, speed-accuracy tradeoff, and other performance factors. Canadian Journal of Experimental Psychology, 49(4), 530–539. doi: 10.1037/1196-1961.49.4.530.CrossRefGoogle Scholar
  120. Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: Meta-analyses of congenital adrenal hyperplasia and digit ratio (2D: 4D) studies. Archives of Sexual Behavior, 37(1), 100–111. doi: 10.1007/s10508-007-9271-3.CrossRefGoogle Scholar
  121. Puts, D. A., Cárdenas, R. A., Bailey, D. H., Burriss, R. P., Jordan, C. L., & Breedlove, S. M. (2010). Salivary testosterone does not predict mental rotation performance in men or women. Hormones and Behavior, 58(2), 282–289. doi: 10.1016/j.yhbeh.2010.03.005.CrossRefGoogle Scholar
  122. Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067–1070. doi: 10.1111/j.1467-9280.2008.02201.x.CrossRefGoogle Scholar
  123. Rammsayer, T., & Lustnauer, S. (1989). Sex differences in time perception. Perceptual and Motor Skills, 68(1), 195–198.CrossRefGoogle Scholar
  124. Reilly, D. (2012). Gender, culture and sex-typed cognitive abilities. PLoS ONE, 7(7), e39904. doi: 10.1371/journal.pone.0039904.CrossRefGoogle Scholar
  125. Reilly, D., & Neumann, D. L. (2013). Gender-role differences in spatial ability: A meta-analytic review. Sex Roles, 68(9), 521–535. doi: 10.1007/s11199-013-0269-0.CrossRefGoogle Scholar
  126. Reilly, D., Neumann, D. L., & Andrews, G. (2015). Sex differences in mathematics and science: A meta-analysis of national assessment of educational progress assessments. Journal of Educational Psychology, 107(3), 645–662. doi: 10.1037/edu0000012.CrossRefGoogle Scholar
  127. Reilly, D., Neumann, D. L., & Andrews, G. (2016). Sex and sex-role differences in specific cognitive abilities. Intelligence, 54, 147–158. doi: 10.1016/j.intell.2015.12.004.
  128. Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.CrossRefGoogle Scholar
  129. Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. doi: 10.1037/0033-2909.86.3.638.CrossRefGoogle Scholar
  130. Ruble, D. N., Martin, C. L., & Berenbaum, S. A. (2006). Gender development. In N. Eisenberg, W. Damon, & R. M. Lerner (Eds.), Handbook of child psychology (6th ed., Vol. 3. Social, Emotional, and Personality Development (pp. 858–932). Hoboken: Wiley.Google Scholar
  131. Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin & Review, 19(1), 58–65. doi: 10.1080/0300443011670110.CrossRefGoogle Scholar
  132. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. doi: 10.1037//0022-0663.93.3.604.CrossRefGoogle Scholar
  133. Sherry, D. F., & Hampson, E. (1997). Evolution and the hormonal control of sexually-dimorphic spatial abilities in humans. Trends in Cognitive Sciences, 1(2), 50–56. doi: 10.1016/S1364-6613(97)01015-2.CrossRefGoogle Scholar
  134. Short, D. (2012). Teaching scientific concepts using a virtual world: Minecraft. Teaching Science, 58(3), 55–58.Google Scholar
  135. Shusterman, A., Ah Lee, S., & Spelke, E. S. (2008). Young children’s spontaneous use of geometry in maps. Developmental Science, 11(2), F1–F7. doi: 10.1111/j.1467-7687.2007.00670.CrossRefGoogle Scholar
  136. Signorella, M. L., & Jamison, W. (1986). Masculinity, femininity, androgyny, and cognitive performance: A meta-analysis. Psychological Bulletin, 100(2), 207–228. doi: 10.1037/0033-2909.100.2.207.CrossRefGoogle Scholar
  137. Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83. doi: 10.1037/0012-1649.42.1.70.CrossRefGoogle Scholar
  138. Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology, 16(1), 97–115.CrossRefGoogle Scholar
  139. Sisk, C. L., & Zehr, J. L. (2005). Pubertal hormones organize the adolescent brain and behavior. Frontiers in Neuroendocrinology, 26(3–4), 163–174. doi: 10.1016/j.yfrne.2005.10.003.CrossRefGoogle Scholar
  140. Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. doi: 10.1016/S0149-7634(00)00014-2.CrossRefGoogle Scholar
  141. Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: A critical review. American Psychologist, 60(9), 950–958. doi: 10.1037/0003-066X.60.9.950.CrossRefGoogle Scholar
  142. Spence, J. T., & Buckner, C. (2000). Instrumental and expressive traits, trait stereotypes, and sexist attitudes: What do they signify? Psychology of Women Quarterly, 24(1), 44–62. doi: 10.1111/j.1471-6402.2000.tb01021.x.CrossRefGoogle Scholar
  143. Spence, I., & Feng, J. (2010). Video games and spatial cognition. Review of General Psychology, 14(2), 92–104. doi: 10.1037/a0019491.CrossRefGoogle Scholar
  144. Stannard, L., Wolfgang, C. H., Jones, I., & Phelps, P. (2001). A longitudinal study of the predictive relations among construction play and mathematical achievement. Early Child Development and Care, 167(1), 115–125. doi: 10.1080/0300443011670110.CrossRefGoogle Scholar
  145. Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52(6), 613–629. doi: 10.1037/0003-066X.52.6.613.CrossRefGoogle Scholar
  146. Steffens, M., & Jelenec, P. (2011). Separating implicit gender stereotypes regarding math and language: Implicit ability stereotypes are self-serving for boys and men, but not for girls and women. Sex Roles, 64(5), 324–335. doi: 10.1007/s11199-010-9924-x.CrossRefGoogle Scholar
  147. Sternberg, R. J. (2012). Intelligence. Wiley Interdisciplinary Reviews: Cognitive Science, 3(5), 501–511. doi: 10.1002/wcs.1193.Google Scholar
  148. Szymanowicz, A., & Furnham, A. (2011). Gender differences in self-estimates of general, mathematical, spatial and verbal intelligence: Four meta analyses. Learning and Individual Differences, 21(5), 493–504. doi: 10.1016/j.lindif.2011.07.001.CrossRefGoogle Scholar
  149. Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434–455.CrossRefGoogle Scholar
  150. Terlecki, M. S., Brown, J., Harner-Steciw, L., Irvin-Hannum, J., Marchetto-Ryan, N., Ruhl, L., et al. (2011). Sex differences and similarities in video game experience, preferences, and self-efficacy: Implications for the gaming industry. Current Psychology, 30(1), 22–33. doi: 10.1007/s12144-010-9095-5.CrossRefGoogle Scholar
  151. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2013a). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. doi: 10.1037/a0028446.CrossRefGoogle Scholar
  152. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013b). Exploring and enhancing spatial thinking links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22(5), 367–373. doi: 10.1177/0963721413484756.CrossRefGoogle Scholar
  153. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. doi: 10.2466/pms.1978.47.2.599.CrossRefGoogle Scholar
  154. Vasta, R., & Liben, L. S. (1996). The water-level task: An intriguing puzzle. Current Directions in Psychological Science, 5(6), 171–177. doi: 10.1111/1467-8721.ep11512379.CrossRefGoogle Scholar
  155. Vilhjalmsson, R., & Kristjansdottir, G. (2003). Gender differences in physical activity in older children and adolescents: The central role of organized sport. Social Science & Medicine, 56(2), 363–374. doi: 10.1016/S0277-9536(02)00042-4.CrossRefGoogle Scholar
  156. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. doi: 10.1037//0033-2909.117.2.250.CrossRefGoogle Scholar
  157. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. doi: 10.1037/a0016127.CrossRefGoogle Scholar
  158. Wai, J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and its relation to STEM educational dose: A 25-year longitudinal study. Journal of Educational Psychology, 102(4), 860–871. doi: 10.1037/a0019454.CrossRefGoogle Scholar
  159. Witkin, H. A. (1971). A manual for the embedded figures test. Palo Alto: Consulting Psychologists Press.Google Scholar
  160. Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88(3), 465–492. doi: 10.1002/sce.10126.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • David Reilly
    • 1
    Email author
  • David L. Neumann
    • 1
    • 2
  • Glenda Andrews
    • 1
    • 2
  1. 1.Griffith UniversitySouthportAustralia
  2. 2.Menzies Health Institute QueenslandSouthportAustralia

Personalised recommendations