Embodied Strategies in the Teaching and Learning of Science

  • Khadeeja Ibrahim-DidiEmail author
  • Mark W. Hackling
  • Jörg Ramseger
  • Barbara Sherriff


This Chapter considers how five, teachers who teach Years 4–6 in Australia and Germany utilised body-based strategies within learning sequences to facilitate the development of students’ scientific understanding. Video case studies were analysed by utilising social constructivist and social semiotic frames alongside complexity-theoretic perspectives of embodiment to investigate how gesture, role-play and distributed embodied strategies were exploited for specific pedagogical purposes. Micro-ethnographic, video-based analysis methods focussed on the role of embodiment as it was used within multimodal approaches to teach how day, night and eclipses are caused, as well as the principles of forces and levers. Fine grained analyses indicated that body-based strategies were introduced, adopted and elaborated by students and teachers as a result of their semiotic potential. Cross-case analyses showed that new information was linked to prior experience; space and time were pedagogically linked to support meaning making; and, perspective and haptic feedback were used to contextualise concepts alongside visual feedback through the use of these strategies. Implications are discussed for pedagogical principles derived from the analyses.


Embodiment Embodied representation Gestures Whole-bodied representation Object manipulation Haptic experience Role-play 


  1. Abrahams, I., & Reiss, M. J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49(8), 1035–1055. doi: 10.1002/tea.21036.CrossRefGoogle Scholar
  2. Ainsworth, S. E. (2006). DeFT: A conceptual framework for learning with multiple representations. Learning and Instruction, 16(3), 183–198.CrossRefGoogle Scholar
  3. Alibali, M. A., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Martinez, C. J., & Knuth, E. J. (2014). How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and Instruction, 32(1), 65–100.CrossRefGoogle Scholar
  4. Aubusson, P., Fogwill, S., Barr, R., & Perkovic, L. (1997). What happens when students do simulation-role-play in science? Research in Science Education, 27(4), 565–579. doi: 10.1007/BF02461481.CrossRefGoogle Scholar
  5. Björkvall, A., & Karlsson, A. (2011). The materiality of discourses and the semiotics of materials: A social perspective on the meaning potentials of written texts and furniture. Semiotica, 187(1)(1), 141–165.Google Scholar
  6. Braund, M. (2015). Drama and learning science: An empty space? British Educational Research Journal, 41(1), 102–121. doi: 10.1002/berj.3130.CrossRefGoogle Scholar
  7. Broaders, S., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136, 539–550.CrossRefGoogle Scholar
  8. Carolan, J., Prain, V., & Waldrip, B. (2008). Using representations for teaching and learning in science. Teaching Science, 54(1), 18–23.Google Scholar
  9. Chandrasekharan, S., & Nersessian, N. J. (2011). Building cognition: The construction of external representations for discovery. Proceedings of the Cognitive Science Society, 33, 267–272.Google Scholar
  10. Clark, A. (1997). The dynamical challenge. Cognitive Science, 21, 461–481.CrossRefGoogle Scholar
  11. Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.CrossRefGoogle Scholar
  12. Cook, S. W., & Goldin-Meadow, S. (2006). The role of gesture in learning: Do children use their hands to change their minds? Journal of Cognition and Development, 7, 211–232.CrossRefGoogle Scholar
  13. Crowder, E. M. (1996). Gestures at work in sense-making science talk. The Journal of the Learning Sciences, 5, 173–208.CrossRefGoogle Scholar
  14. Dawson, C. (1994). Science teaching in the secondary school. Melbourne: Longman.Google Scholar
  15. Dewey, J. (1938). Experience & education. New York: Kappa Delta Pi.Google Scholar
  16. diSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.CrossRefGoogle Scholar
  17. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649–672. doi: 10.1002/sce.3730750606.CrossRefGoogle Scholar
  18. Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 177–205). Mahwah: Erlbaum.Google Scholar
  19. Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 199–241). London: Cambridge University Press (Reprinted in Knowledge acquisition and learning, 1993, 673–694).CrossRefGoogle Scholar
  20. Gibson, J. J. (1954). The visual perception of objective motion and sub-jective movement. Psychological Review, 61, 304–314.CrossRefGoogle Scholar
  21. Goldin-Meadow, S. (2010). When gesture does and does not promote learning. Language and Cognition, 2(1), 1–19. doi: 10.1515/LANGCOG.2010.001.CrossRefGoogle Scholar
  22. Goldin-Meadow, S. (2011). Learning through gesture. WIREs Cognitive Science, 2, 595–607. doi: 10.1002/wcs.132.CrossRefGoogle Scholar
  23. Goldman-Segall, R., & Goldman, R. (2014). Points of viewing children’s thinking. Hoboken: Psychology Press.Google Scholar
  24. Goodwin, C. (2003). The body in action. In J. Coupland & R. Gwyn (Eds.), Discourse, the body and identity (pp. 19–42). New York: Palgrave & Macmillan.CrossRefGoogle Scholar
  25. Hackling, M., Murcia, K., & Ibrahim-Didi, K. (2013). Teacher orchestration of multimodal resources to support the construction of an explanation in a year 4 astronomy topic. Teaching Science, 59(1), 7–15.Google Scholar
  26. Hegarty, M., Mayer, S., Kriz, S., & Keehner, M. (2005). The role of gestures in mental animation. Spatial Cognition and Computation, 5, 333–356.CrossRefGoogle Scholar
  27. Hostetter, A. B. (2011). When do gestures communicate? A meta-analysis. Psychological Bulletin, 137(2), 297–315. doi: 10.1037/a0022128.CrossRefGoogle Scholar
  28. Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40(1), 5–28. doi: 10.1007/s11165-009-9154-9.CrossRefGoogle Scholar
  29. Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577. doi: 10.1016/j.pragma.2004.06.008.CrossRefGoogle Scholar
  30. Hutchins, E., & Saeko, N. (2011). Collaborative construction of multimodal utterences. In J. Streeck, C. Goodwin, & C. LeBaron (Eds.), Multimodality and human activity: Research on human behaviour, action and communication (pp. 29–43). Cambridge: Cambridge University Press.Google Scholar
  31. Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 22(9), 1011–1026.Google Scholar
  32. Jewitt, C. (2009). An introduction to multimodality. In C. Jewitt (Ed.), The Routledge handbook of multimodal analysis (pp. 14–27). New York: Routledge.Google Scholar
  33. Kiverstein, J. (2012). The meaning of embodiment. Topics in Cognitive Science, 4(4), 740–758. doi: 10.1111/j.1756-8765.2012.01219.x.CrossRefGoogle Scholar
  34. Kontra, C. E., Goldin-Meadow, S., & Beilock, S. L. (2012). Embodied learning across the life span. Topics in Cognitive Science, 4, 731–739. doi: 10.1111/j.1756-8765.2012.01221.x.CrossRefGoogle Scholar
  35. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs: Prentice Hall.Google Scholar
  36. Kress, G. (2010). Multimodality: A social semiotic approach to contemporary communication. London: Routledge.Google Scholar
  37. Kress, G. R., & Van Leeuwen, T. (2006). Reading images: The grammar of visual design. New York: Routledge.Google Scholar
  38. Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.Google Scholar
  39. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. New York: Basic Books.Google Scholar
  40. Larson, R., & Segal, G. (1995). Knowledge of meaning: An Introduction to semantic theory. Cambridge, MA: MIT Press.Google Scholar
  41. Leach, J., & Scott, P. (1995). The demands of learning science concepts: Issues of theory and practice. School Science Review, 76(277), 47–52.Google Scholar
  42. Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452.CrossRefGoogle Scholar
  43. Majlesi, A. R. (2015). Matching gestures – Teachers’ repetitions of students’ gestures in second language learning classrooms. Journal of Pragmatics, 76, 30–45. doi: 10.1016/j.pragma.2014.11.006.CrossRefGoogle Scholar
  44. Maturana, H. R., & Varela, F. G. (1987). The tree of knowledge. Boston: Shambhala.Google Scholar
  45. McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.Google Scholar
  46. Millar, R., & Abrahams, I. (2009). Practical work: Making it more effective. School Science Review, 91(334), 59–64.Google Scholar
  47. Nersessian, N. J. (2006). Model-based reasoning in distributed cognitive systems. Philosophy of Science, 72, 699–709.CrossRefGoogle Scholar
  48. Nersessian, N. J. (2009). How do engineering scientists think? Model-based simulation in biomedical engineering research laboratories. Topics in Cognitive Science, 1, 730–757. doi: 10.1111/j.1756-8765.2009.01032.x.CrossRefGoogle Scholar
  49. Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849–877. doi: 10.1002/sce.21026.CrossRefGoogle Scholar
  50. Norris, S. (2004). Analyzing multimodal interaction: A methodological framework. New York: Routledge.Google Scholar
  51. Osborne, R., & Freyberg, P. (1985). Learning in science: The implications of children’s science. London: Heinemann.Google Scholar
  52. Osbeck, L., & Nersessian, N. (2014). Situating distributed cognition. Philosophical Psychology, 27(1), 82–97. doi: 10.1080/09515089.2013.829384.CrossRefGoogle Scholar
  53. Padalkar, S., & Ramadas, J. (2011). Designed and spontaneous gestures in elementary astronomy education. International Journal of Science Education, 33(12), 1703–1739. doi: 10.1080/09500693.2010.520348.CrossRefGoogle Scholar
  54. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
  55. Ping, R. M., Goldin-Meadow, S., & Beilock, S. L. (2014). Understanding gesture: Is the listener’s motor system involved? Journal of Experimental Psychology: General, 143(1), 195–204. doi: 10.1037/a0032246.CrossRefGoogle Scholar
  56. Plummer, J. D., Wasko, K., & Slagle, C. (2011). Children learning to explain daily celestial motion: Understanding astronomy across moving frames of reference. International Journal of Science Education, 33(14), 1963–1992.CrossRefGoogle Scholar
  57. Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843–1866. doi: 10.1080/09500690600718294.CrossRefGoogle Scholar
  58. Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773.CrossRefGoogle Scholar
  59. Prain, V., & Tytler, R. (2013). Learning through the affordances of representation construction. In R. Tytler, V. Prain, P. Hubber, & B. Waldrip (Eds.), Constructing representations to learn in science (pp. 67–82). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  60. Roth, W. (2000). From gesture to scientific language. Journal of Pragmatics, 32(11), 1683–1714. doi: 10.1016/S0378-2166(99)00115-0.CrossRefGoogle Scholar
  61. Ruf, U., & Gallin, P. (1995). Ich mach das so! Wie machst du das? Das machen wir ab. Sprache und Mathematik für das 1.–3. Schuljahr. Zürich: Lehrmittelverlag des Kantons Zürich.Google Scholar
  62. Sakr, M., Jewitt, C., & Price, S. (2014). The semiotic work of the hands in scientific enquiry. Classroom Discourse, 5(1), 51–70. doi: 10.1080/19463014.2013.868078.CrossRefGoogle Scholar
  63. Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20, 457–497.CrossRefGoogle Scholar
  64. Tytler, R., & Prain, V. (2010). A framework for re-thinking learning in science from recent cognitive science perspectives. International Journal of Science Education, 32(15), 2055–2078.CrossRefGoogle Scholar
  65. Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science. Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  66. Varela, F. J., Rosch, E., & Thompson, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
  67. Vijapurkar, J., Kawalkar, A., & Nambiar, P. (2014). What do cells really look like? An inquiry into students’ difficulties in visualising a 3-D biological cell and lessons for pedagogy. Research in Science Education, 44(2), 307–333. doi: 10.1007/s11165-013-9379-5.CrossRefGoogle Scholar
  68. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  69. Waldrip, B., & Prain, V. (2012). Learning from and through representations in science. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 145–155). New York: Springer.CrossRefGoogle Scholar
  70. Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80. doi: 10.1007/s11165-009-9157-6.CrossRefGoogle Scholar
  71. Woolnough, B. (Ed.). (1990). Practical science: The role and reality of practical work in school science. Maidenhead: Open University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Khadeeja Ibrahim-Didi
    • 1
    Email author
  • Mark W. Hackling
    • 1
  • Jörg Ramseger
    • 2
  • Barbara Sherriff
    • 1
  1. 1.School of EducationEdith Cowan UniversityPerthAustralia
  2. 2.Center for Research in Primary Education (Arbeitsstelle Bildungsforschung Primarstufe)Freie Universität BerlinBerlinGermany

Personalised recommendations