The Garden of Eden Theorem for Cellular Automata on Group Sets

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9863)


We prove the Garden of Eden theorem for cellular automata with finite set of states and finite neighbourhood on right amenable left homogeneous spaces with finite stabilisers. It states that the global transition function of such an automaton is surjective if and only if it is pre-injective. Pre-Injectivity means that two global configurations that differ at most on a finite subset and have the same image under the global transition function must be identical.


Cellular automata Group actions Garden of Eden theorem 


  1. 1.
    Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in Mathematics. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Moore, E.F.: Machine models of self-reproduction. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 17–33 (1962)Google Scholar
  3. 3.
    Myhill, J.R.: The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14, 685–686 (1963)MathSciNetMATHGoogle Scholar
  4. 4.
    Moriceau, S.: Cellular automata on a \(G\)-Set. Journal Cellular Automata 6(6), 461–486 (2011)MathSciNetGoogle Scholar
  5. 5.
    Wacker, S.: Cellular automata on group sets and the uniform Curtis-Hedlund-Lyndon theorem. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 185–198. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39300-1_15 CrossRefGoogle Scholar
  6. 6.
    Wacker, S.: Right Amenable Left Group Sets and the Tarski-Følner Theorem [math.GR]. arXiv:1603.06460

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations