Asynchronous Simulation of Boolean Networks by Monotone Boolean Networks

  • Tarek Melliti
  • Damien Regnault
  • Adrien Richard
  • Sylvain Sené
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9863)


We prove that the fully asynchronous dynamics of a Boolean network \(f:\{0,1\}^n\rightarrow \{0,1\}^n\) without negative loop can be simulated, in a very specific way, by a monotone Boolean network with 2n components. We then use this result to prove that, for every even n, there exists a monotone Boolean network \(f:\{0,1\}^n\rightarrow \{0,1\}^n\), an initial configuration x and a fixed point y of f such that: (i) y can be reached from x with a fully asynchronous updating strategy, and (ii) all such strategies contains at least \(2^{\frac{n}{2}}\) updates. This contrasts with the following known property: if \(f:\{0,1\}^n\rightarrow \{0,1\}^n\) is monotone, then, for every initial configuration x, there exists a fixed point y such that y can be reached from x with a fully asynchronous strategy that contains at most n updates.


Boolean networks Monotone networks Asynchronous updates 



This work has been partially supported by the project PACA APEX FRI. We wish also to thank Pierre-Etienne Meunier, Maximilien Gadouleau and an anonymous reviewer for stimulating discussions and interesting remarks.


  1. 1.
    Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull. Math. Biol. 70(5), 1398–1409 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5(Suppl 1), S85–S94 (2008)CrossRefGoogle Scholar
  4. 4.
    Domshlak, C.: On recursively directed hypercubes. Electron. J. Comb. 9(1), R23 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gadouleau, M., Richard, A., Fanchon, E.: Reduction and fixed points of Boolean networks and linear network coding solvability. ArXiv e-prints, December 2014Google Scholar
  6. 6.
    Gadouleau, M., Richard, A., Riis, S.: Fixed points of Boolean networks, guessing graphs, and coding theory. SIAM J. Discrete Math. 29(4), 2312–2335 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. U.S.A. 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Julio, A., Demongeot, J., Goles, E.: On limit cycles of monotone functions with symmetric connection graph. Theoret. Comput. Sci. 322(2), 237–244 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected nets. J. Theor. Biol. 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kauffman, S.A.: Origins of Order Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  11. 11.
    Knuth, D.E.: Efficient balanced codes. IEEE Trans. Inf. Theory 32(1), 51–53 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Le Novère, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16, 146–158 (2015)CrossRefGoogle Scholar
  13. 13.
    MacCulloch, W.S., Pitts, W.S.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Bio. Phys. 5, 113–115 (1943)MathSciNetGoogle Scholar
  14. 14.
    Melliti, T., Regnault, D., Richard, A., Sené, S.: On the convergence of Boolean automata networks without negative cycles. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 124–138. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Remy, E., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. 41(3), 335–350 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44(4), 378–392 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Robert, F.: Discrete Iterations: A Metric Study. Series in Computational Mathematics, vol. 6, p. 198. Springer, Heidelberg (1986)Google Scholar
  18. 18.
    Robert, F.: Les systèmes dynamiques discrets. Mathématiques et Applications, vol. 19, p. 296. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)CrossRefGoogle Scholar
  20. 20.
    Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)zbMATHGoogle Scholar
  21. 21.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos: an Interdisciplinary. J. Nonlinear Sci. 11(1), 180–195 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tarek Melliti
    • 1
  • Damien Regnault
    • 1
  • Adrien Richard
    • 2
  • Sylvain Sené
    • 3
  1. 1.Université d’Évry Val-d’Essonne, CNRS, IBISC EA 4526ÉvryFrance
  2. 2.Université de Nice Sophia Antipolis, CNRS, I3S UMR 7271Sophia-AntipolisFrance
  3. 3.Aix-Marseille Université, CNRS, LIF UMR 7279MarseilleFrance

Personalised recommendations