Advertisement

A Field Based Solution of Mazoyer’s FSSP Schema

  • Luidnel Maignan
  • Jean-Baptiste Yunès
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9863)

Abstract

Continuing our line of work on field based cellular automata programming we, here, focus our attention on an implementation of Mazoyer’s schema for cellular synchronization problem. Due to its very special nature among the numerous solutions to the problem, we emphasize the power of cellular fields to construct cellular programs: clear semantic construction, modularity, automatic synthesis of finite state machines.

Keywords

Cellular automata Cellular fields Synchronization 

References

  1. 1.
    Alonso-Sanz, R., Martin, M.: Elementary cellular automata with memory. Complex Syst. 14, 99–126 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Inf. Control 10(1), 22–42 (1967). http://www.sciencedirect.com/science/article/pii/S0019995867900320 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Maignan, L., Yunès, J.-B.: A spatio-temporal algorithmic point of view on firing squad synchronisation problem. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 101–110. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-33350-7_11 CrossRefGoogle Scholar
  4. 4.
    Maignan, L., Yunès, J.-B.: Experimental finitization of infinite field-based generalized FSSP solution. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 136–145. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-11520-7_15 Google Scholar
  5. 5.
    Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoret. Comput. Sci. 50(2), 183–238 (1987). http://www.sciencedirect.com/science/article/pii/0304397587901241 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Noguchi, K.: Simple 8-state minimal time solution to the firing squad synchronization problem. Theoret. Comput. Sci. 314(3), 303–334 (2004). http://www.sciencedirect.com/science/article/pii/S0304397503004250 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Schmid, H., Worsch, T.: The firing squad synchronization problem with many generals for one-dimensional CA. In: Levy, J.J., Mayr, E.W., Mitchell, J.C. (eds.) Exploring New Frontiers of Theoretical Informatics. IFIP, vol. 155, pp. 111–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Swerinski, H.: Time-optimum solution of the firing-squad-synchronization-problem for n-dimensional rectangles with the general at an arbitrary position. Theoret. Comput. Sci. 19, 305–320 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Umeo, H., Kubo, K., Takahashi, Y.: An isotropic optimum-time FSSP algorithm for two-dimensional cellular automata. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 381–393. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Waksman, A.: An optimum solution to the firing squad synchronization problem. Inf. Control 9(1), 66–78 (1966). http://www.sciencedirect.com/science/article/pii/S0019995866901100 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LACL, Université Paris-Est CréteilCréteilFrance
  2. 2.IRIF, Université Paris-DiderotParisFrance

Personalised recommendations