Regional Control of Boolean Cellular Automata

  • Franco Bagnoli
  • Samira El Yacoubi
  • Raul Rechtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9863)


An interesting problem in extended physical systems is that of the regional control, i.e., how to add a suitable control at the boundary or inside a region of interest so that the state of such region is near to a desired one. Many physical problems are modelled by means of cellular automata. It is therefore important to port control concepts to this discrete world. In this paper we address the problem of regional controllability of cellular automata via boundary actions, i.e., we investigate the characteristics of a cellular automaton rule so that it can be controlled inside a given region only acting on the value of sites at its boundaries.


Boolean Function Cellular Automaton Cellular Automaton Cellular Automaton Model Target Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437 (1969); for a recent application, see Damiani, C., Serra, R., Villani, M., Kauffman, S.A., Colacci, A.: Cell-cell interaction and diversity of emergent behaviours. IET Syst. Biol. 5, 137 (2011); Chorowski, J., Zurada, J.M.: Extracting rules from neural networks as decision diagrams. IEEE Trans. Neural Netw. 22, 2435 (2012). For multiple applications, see the series of Proceedings of the Conference in ACRI: Cellular Automata for Research and Industry, LNCS, vol. 8751. Springer, Berlin (2014); ibid., vol. 7495. Springer, Berlin (2012); ibid., vol. 6350. Springer, Berlin (2010); ibid., vol. 5191. Springer, Berlin (2008); ibid., vol. 4173. Springer, Berlin (2006); ibid., vol. 3305. Springer, Berlin (2004); ibid., vol. 2493. Springer, Berlin (2002)Google Scholar
  2. 2.
    Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys. Rev. E 86(6), 066201 (2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 59, R1307 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Zerrik, E., Boutoulout, A., El Jai, A.: Actuators and regional boundary controllability for parabolic systems. Int. J. Syst. Sci. 31, 73–82 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Lions, J.L.: Controlabilité exacte des systèmes distribueés. C.R.A.S, Série I 302, 471–475 (1986)zbMATHGoogle Scholar
  7. 7.
    Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20, 639–739 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    El Yacoubi, S., El Jai, A., Ammor, N.: Regional controllability with cellular automata models. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 357–367. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Fekih, A.B., El Jai, A.: Regional analysis of a class of cellular automata models. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 48–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    El Jai, A., Simon, M.C., Zerrik, E., Prirchard, A.J.: Regional controllability of distributed parameter systems. Int. J. Control 62, 1351–1365 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vichniac, G.: Boolean derivatives on cellular automata. Physica D 45, 63–74 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C. 3, 307 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Franco Bagnoli
    • 1
    • 2
  • Samira El Yacoubi
    • 3
    • 4
  • Raul Rechtman
    • 5
  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceSesto FiorentinoItaly
  2. 2.INFNFirenzeItaly
  3. 3.IMAGES Espace-DevUniversity of Perpignan Via DomitiaPerpignanFrance
  4. 4.Espace-DevUMR 228 IRD, UM, UAG, UR, Maison de la télédétectionMontpellierFrance
  5. 5.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations