Advertisement

Selecting Random Effect Components in a Sparse Hierarchical Bayesian Model for Identifying Antigenic Variability

  • Vinny Davies
  • Richard Reeve
  • William T. Harvey
  • Dirk Husmeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9874)

Abstract

In Foot-and-Mouth Disease Virus (FMDV), understanding how viruses offer protection against related emerging strains is vital for creating effective vaccines. With testing large numbers of vaccines being infeasible, the development of an in silico predictor of cross-protection between virus strains has been a vital area of recent research. The current paper reviews a recent contribution to this area, the SABRE method, a sparse hierarchical Bayesian model which uses spike and slab priors to identify key antigenic sites within FMDV serotypes. WAIC is then combined with the SABRE method and its ability to approximate Bayesian Cross Validation performance in terms of correctly selecting random effect components analysed. WAIC and the SABRE method have then been applied to two FMDV datasets and the results analysed.

Keywords

Model selection Spike and slab prior Foot-and-Mouth Disease Virus Bayesian hierarchical models WAIC Cross Validation 

References

  1. Andrieu, C., Doucet, A.: Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC. IEEE Trans. Sig. Process. 47(10), 2667–2676 (1999)CrossRefGoogle Scholar
  2. Bates, D., Maechler, M., Bolker, B.: lme4: linear mixed-effects models using S4 classes (2013)Google Scholar
  3. Davies, V., Reeve, R., Harvey, W., Maree, F., Husmeier, D.: Sparse Bayesian variable selection for the identification of antigenic variability in the Foot-and-Mouth Disease Virus. J. Mach. Learn. Res. Workshop Conf. Proc. (AISTATS) 33, 149–158 (2014)Google Scholar
  4. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Ventari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. Chapman & Hall, London (2013)Google Scholar
  5. Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992)CrossRefGoogle Scholar
  6. George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88(423), 881–889 (1993)CrossRefGoogle Scholar
  7. Grazioli, S., Moretti, M., Barbieri, I., Crosatti, M., Brocchi, E.: Use of monoclonal antibodies to identify and map new antigenic determinants involved in neutralisation on FMD viruses type SAT 1 and SAT 2. In: Report of the Session of the Research Group of the Standing Technical Committee of the European Commission for the Control of Foot-and-Mouth Disease, pp. 287–297, Appendix 43 (2006)Google Scholar
  8. Harvey, W.T., Gregory, V., Benton, D.J., Hall, J.P., Daniels, R.S., Bedford, T., Haydon, D.T., Hay, A.J., McCauley, J.W., Reeve, R.: Identifying the genetic basis of antigenic change in influenza A (H1N1). arXiv preprint arXiv:1404.4197 (2015)
  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  10. Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Jow, H., Boys, R.J., Wilkinson, D.J.: Bayesian identification of protein differential expression in multi-group isobaric labelled mass spectrometry data. Stat. Appl. Genet. Mol. Biol. 13(5), 531–551 (2014)MathSciNetzbMATHGoogle Scholar
  12. Maree, F.F., Borley, D.W., Reeve, R., Upadhyaya, S., Lukhwareni, A., Mlingo, T., Esterhuysen, J.J., Harvey, W.T., Fry, E.E., Parida, S., Paton, D.J., Mahapatra, M.: Tracking the antigenic evolution of Foot-and-Mouth Disease Virus (2015, in submission)Google Scholar
  13. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRefGoogle Scholar
  14. Mitchell, T., Beauchamp, J.: Bayesian variable selection in linear regression. J. Am. Stat. Assoc. 83(404), 1023–1032 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Mohamed, S., Heller, K., Ghahramani, Z.: Bayesian and \(l_1\) approaches for sparse unsupervised learning. In: Proceedings of the 29th International Conference on Machine Learning (ICML 2012), pp. 751–758 (2012)Google Scholar
  16. Pinheiro, J.C., Bates, D.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  17. Reeve, R., Blignaut, B., Esterhuysen, J.J., Opperman, P., Matthews, L., Fry, E.E., de Beer, T.A.P., Theron, J., Rieder, E., Vosloo, W., O’Neill, H.G., Haydon, D.T., Maree, F.F.: Sequence-based prediction for vaccine strain selection and identification of antigenic variability in Foot-and-Mouth Disease Virus. PLoS Comput. Biol. 6(12), e1001027 (2010)MathSciNetCrossRefGoogle Scholar
  18. Schelldorfer, J., Bühlmann, P., van de Geer, S.: Estimation for high-dimensional linear mixed-effects models using \({\ell }1\)-penalization. Scand. J. Stat. 38(2), 197–214 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  20. Watanabe, S.: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vinny Davies
    • 1
  • Richard Reeve
    • 1
  • William T. Harvey
    • 1
  • Dirk Husmeier
    • 1
  1. 1.University of GlasgowGlasgowScotland, UK

Personalised recommendations