The Challenges of Interpreting Phosphoproteomics Data: A Critical View Through the Bioinformatics Lens

  • Panayotis Vlastaridis
  • Stephen G. Oliver
  • Yves Van de Peer
  • Grigoris D. Amoutzias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9874)

Abstract

During the last decade, there has been great progress in high-throughput (HTP) phosphoproteomics and hundreds or even thousands of phosphorylation sites (p-sites) can now be detected in a single experiment. This success is attributable to a combination of very sensitive Mass Spectrometry instruments, better phosphopeptide enrichment techniques and bioinformatics software that are capable of detecting peptides and localizing p-sites. These new technologies have opened up a whole new level of gene regulation to be studied, with great potential for therapeutics and synthetic biology. Nevertheless, many challenges remain to be resolved; these concern the biases and noise of these proteomic technologies, the biological noise that is present, as well as the incompleteness of the current datasets. Despite these problems, the datasets published so far appear to represent a good sample of a complete phosphoproteome of some organisms and are capable of revealing their major properties.

Keywords

Phosphoproteomics Phosphorylation Bioinformatics Data integration 

References

  1. 1.
    Krüger, R., Kübler, D., Pallissé, R., Burkovski, A., Lehmann, W.D.: Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. Anal. Chem. 78, 1987–1994 (2006)CrossRefGoogle Scholar
  2. 2.
    Nishi, H., Shaytan, A., Panchenko, A.R.: Physicochemical mechanisms of protein regulation by phosphorylation. Front. Genet. 5, 270 (2014)CrossRefGoogle Scholar
  3. 3.
    Strumillo, M., Beltrao, P.: Towards the computational design of protein post-translational regulation. Bioorg. Med. Chem. 23, 2877–2882 (2015)CrossRefGoogle Scholar
  4. 4.
    Cohen, P.: The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem. Sci. 25, 596–601 (2000)CrossRefGoogle Scholar
  5. 5.
    Amoutzias, G.D., He, Y., Lilley, K.S., Van de Peer, Y., Oliver, S.G.: Evaluation and properties of the budding yeast phosphoproteome. Mol. Cell. Proteomics MCP 11, M111.009555 (2012)CrossRefGoogle Scholar
  6. 6.
    Cohen, P.: The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002)CrossRefGoogle Scholar
  7. 7.
    Sadowski, I., Breitkreutz, B.-J., Stark, C., Su, T.-C., Dahabieh, M., Raithatha, S., Bernhard, W., Oughtred, R., Dolinski, K., Barreto, K., Tyers, M.: The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database J. Biol. Databases Curation. 2013, bat026 (2013)Google Scholar
  8. 8.
    Amoutzias, G.D., Bornberg-Bauer, E., Oliver, S.G., Robertson, D.L.: Reduction/oxidation-phosphorylation control of DNA binding in the bZIP dimerization network. BMC Genom. 7, 107 (2006)CrossRefGoogle Scholar
  9. 9.
    Papadopoulou, N., Chen, J., Randeva, H.S., Levine, M.A., Hillhouse, E.W., Grammatopoulos, D.K.: Protein kinase A-induced negative regulation of the corticotropin-releasing hormone R1alpha receptor-extracellularly regulated kinase signal transduction pathway: the critical role of Ser301 for signaling switch and selectivity. Mol. Endocrinol. Baltim. Md. 18, 624–639 (2004)CrossRefGoogle Scholar
  10. 10.
    Zhang, K., Lin, W., Latham, J.A., Riefler, G.M., Schumacher, J.M., Chan, C., Tatchell, K., Hawke, D.H., Kobayashi, R., Dent, S.Y.R.: The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122, 723–734 (2005)CrossRefGoogle Scholar
  11. 11.
    Oliveira, A.P., Sauer, U.: The importance of post-translational modifications in regulating Saccharomyces cerevisiae metabolism. FEMS Yeast Res. 12, 104–117 (2012)CrossRefGoogle Scholar
  12. 12.
    Oliveira, A.P., Ludwig, C., Picotti, P., Kogadeeva, M., Aebersold, R., Sauer, U.: Regulation of yeast central metabolism by enzyme phosphorylation. Mol. Syst. Biol. 8, 623 (2012)CrossRefGoogle Scholar
  13. 13.
    Deschênes-Simard, X., Kottakis, F., Meloche, S., Ferbeyre, G.: ERKs in cancer: friends or foes? Cancer Res. 74, 412–419 (2014)CrossRefGoogle Scholar
  14. 14.
    Reimand, J., Wagih, O., Bader, G.D.: The mutational landscape of phosphorylation signaling in cancer. Sci. Rep. 3, 2651 (2013)CrossRefGoogle Scholar
  15. 15.
    Khadjavi, A., Barbero, G., Destefanis, P., Mandili, G., Giribaldi, G., Mannu, F., Pantaleo, A., Ceruti, C., Bosio, A., Rolle, L., Turrini, F., Fontana, D.: Evidence of abnormal tyrosine phosphorylated proteins in the urine of patients with bladder cancer: the road toward a new diagnostic tool? J. Urol. 185, 1922–1929 (2011)CrossRefGoogle Scholar
  16. 16.
    Jers, C., Soufi, B., Grangeasse, C., Deutscher, J., Mijakovic, I.: Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev. Proteomics 5, 619–627 (2008)CrossRefGoogle Scholar
  17. 17.
    Schwartz, D., Church, G.M.: Collection and motif-based prediction of phosphorylation sites in human viruses. Sci. Signal 3, rs2 (2010)CrossRefGoogle Scholar
  18. 18.
    Doll, S., Burlingame, A.L.: Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem. Biol. 10, 63–71 (2015)CrossRefGoogle Scholar
  19. 19.
    Engholm-Keller, K., Larsen, M.R.: Technologies and challenges in large-scale phosphoproteomics. Proteomics 13, 910–931 (2013)CrossRefGoogle Scholar
  20. 20.
    Olsen, J.V., Mann, M.: Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics MCP. 12, 3444–3452 (2013)CrossRefGoogle Scholar
  21. 21.
    Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., Aebersold, R.: Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods 4, 231–237 (2007)CrossRefGoogle Scholar
  22. 22.
    Lienhard, G.E.: Non-functional phosphorylations? Trends Biochem. Sci. 33, 351–352 (2008)CrossRefGoogle Scholar
  23. 23.
    Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., Brunak, S., Mann, M.: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal 3, ra3 (2010)CrossRefGoogle Scholar
  24. 24.
    Soufi, B., Kelstrup, C.D., Stoehr, G., Fröhlich, F., Walther, T.C., Olsen, J.V.: Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol. Biosyst. 5, 1337–1346 (2009)CrossRefGoogle Scholar
  25. 25.
    Landry, C.R., Levy, E.D., Michnick, S.W.: Weak functional constraints on phosphoproteomes. Trends Genet. TIG 25, 193–197 (2009)CrossRefGoogle Scholar
  26. 26.
    Lee, D.C.H., Jones, A.R., Hubbard, S.J.: Computational phosphoproteomics: from identification to localization. Proteomics 15, 950–963 (2015)CrossRefGoogle Scholar
  27. 27.
    Gruhler, A., Olsen, J.V., Mohammed, S., Mortensen, P., Faergeman, N.J., Mann, M., Jensen, O.N.: Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics MCP 4, 310–327 (2005)CrossRefGoogle Scholar
  28. 28.
    Holt, L.J., Tuch, B.B., Villén, J., Johnson, A.D., Gygi, S.P., Morgan, D.O.: Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682–1686 (2009)CrossRefGoogle Scholar
  29. 29.
    Li, X., Gerber, S.A., Rudner, A.D., Beausoleil, S.A., Haas, W., Villén, J., Elias, J.E., Gygi, S.P.: Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6, 1190–1197 (2007)CrossRefGoogle Scholar
  30. 30.
    Gauci, S., Helbig, A.O., Slijper, M., Krijgsveld, J., Heck, A.J.R., Mohammed, S.: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493–4501 (2009)CrossRefGoogle Scholar
  31. 31.
    Sharma, K., D’Souza, R.C.J., Tyanova, S., Schaab, C., Wiśniewski, J.R., Cox, J., Mann, M.: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014)CrossRefGoogle Scholar
  32. 32.
    Choudhary, G., Wu, S.-L., Shieh, P., Hancock, W.S.: Multiple enzymatic digestion for enhanced sequence coverage of proteins in complex proteomic mixtures using capillary LC with ion trap MS/MS. J. Proteome Res. 2, 59–67 (2003)CrossRefGoogle Scholar
  33. 33.
    Wiśniewski, J.R., Mann, M.: Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal. Chem. 84, 2631–2637 (2012)CrossRefGoogle Scholar
  34. 34.
    Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H., Oliver, S.G.: Life with 6000 genes. Science 274(546), 563–567 (1996)Google Scholar
  35. 35.
    Oliver, S.G., van der Aart, Q.J., Agostoni-Carbone, M.L., Aigle, M., Alberghina, L., Alexandraki, D., Antoine, G., Anwar, R., Ballesta, J.P., Benit, P.: The complete DNA sequence of yeast chromosome III. Nature 357, 38–46 (1992)CrossRefGoogle Scholar
  36. 36.
    Beltrao, P., Trinidad, J.C., Fiedler, D., Roguev, A., Lim, W.A., Shokat, K.M., Burlingame, A.L., Krogan, N.J.: Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 7, e1000134 (2009)CrossRefGoogle Scholar
  37. 37.
    De Godoy, L.M.F., Olsen, J.V., Cox, J., Nielsen, M.L., Hubner, N.C., Fröhlich, F., Walther, T.C., Mann, M.: Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008)CrossRefGoogle Scholar
  38. 38.
    Wu, R., Dephoure, N., Haas, W., Huttlin, E.L., Zhai, B., Sowa, M.E., Gygi, S.P.: Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol. Cell. Proteomics MCP. 10, M111.009654 (2011)CrossRefGoogle Scholar
  39. 39.
    Landry, C.R., Freschi, L., Zarin, T., Moses, A.M.: Turnover of protein phosphorylation evolving under stabilizing selection. Front. Genet. 5, 245 (2014)CrossRefGoogle Scholar
  40. 40.
    Moses, A.M., Hériché, J.-K., Durbin, R.: Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Genome Biol. 8, R23 (2007)CrossRefGoogle Scholar
  41. 41.
    Iakoucheva, L.M., Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G., Obradovic, Z., Dunker, A.K.: The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049 (2004)CrossRefGoogle Scholar
  42. 42.
    Ingrell, C.R., Miller, M.L., Jensen, O.N., Blom, N.: NetPhosYeast: prediction of protein phosphorylation sites in yeast. Bioinformatics 23, 895–897 (2007)CrossRefGoogle Scholar
  43. 43.
    Mok, J., Kim, P.M., Lam, H.Y.K., Piccirillo, S., Zhou, X., Jeschke, G.R., Sheridan, D.L., Parker, S.A., Desai, V., Jwa, M., Cameroni, E., Niu, H., Good, M., Remenyi, A., Ma, J.-L.N., Sheu, Y.-J., Sassi, H.E., Sopko, R., Chan, C.S.M., De Virgilio, C., Hollingsworth, N.M., Lim, W.A., Stern, D.F., Stillman, B., Andrews, B.J., Gerstein, M.B., Snyder, M., Turk, B.E.: Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Sci. Signal 3, ra12 (2010)CrossRefGoogle Scholar
  44. 44.
    Xue, Y., Gao, X., Cao, J., Liu, Z., Jin, C., Wen, L., Yao, X., Ren, J.: A summary of computational resources for protein phosphorylation. Curr. Protein Pept. Sci. 11, 485–496 (2010)CrossRefGoogle Scholar
  45. 45.
    Trost, B., Kusalik, A.: Computational Prediction of Eukaryotic Phosphorylation Sites. Bioinformatics 27, 2927–2935 (2011)CrossRefGoogle Scholar
  46. 46.
    Manning, G., Plowman, G.D., Hunter, T., Sudarsanam, S.: Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520 (2002)CrossRefGoogle Scholar
  47. 47.
    Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., Syka, J.E.P., Bai, D.L., Shabanowitz, J., Burke, D.J., Troyanskaya, O.G., Hunt, D.F.: Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 104, 2193–2198 (2007)CrossRefGoogle Scholar
  48. 48.
    Yachie, N., Saito, R., Sugiyama, N., Tomita, M., Ishihama, Y.: Integrative features of the yeast phosphoproteome and protein-protein interaction map. PLoS Comput. Biol. 7, e1001064 (2011)CrossRefGoogle Scholar
  49. 49.
    Amoutzias, G.D., He, Y., Gordon, J., Mossialos, D., Oliver, S.G., Van de Peer, Y.: Posttranslational regulation impacts the fate of duplicated genes. Proc. Natl. Acad. Sci. U. S. A. 107, 2967–2971 (2010)CrossRefGoogle Scholar
  50. 50.
    Schweiger, R., Linial, M.: Cooperativity within proximal phosphorylation sites is revealed from large-scale proteomics data. Biol. Direct. 5, 6 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Panayotis Vlastaridis
    • 1
  • Stephen G. Oliver
    • 2
  • Yves Van de Peer
    • 3
    • 4
    • 5
  • Grigoris D. Amoutzias
    • 1
  1. 1.Bioinformatics Laboratory, Department of Biochemistry and BiotechnologyUniversity of ThessalyLarisaGreece
  2. 2.Department of Biochemistry, Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
  3. 3.Department of Plant Systems Biology, VIB, Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  4. 4.Bioinformatics Institute GhentGhentBelgium
  5. 5.Department of Genetics, Genomics Research InstituteUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations