Microfluidic Aqueous Two-Phase Systems

  • Glenn M. WalkerEmail author
Part of the Microsystems and Nanosystems book series (MICRONANO)


Aqueous Two-Phase Systems (ATPS) are an established technology that have been used to separate out biologically important particles such as biomolecules, organelles, and whole cells. ATPS are formed by mixing polymers such as polyethylene glycol (PEG) and dextran (Dex) at sufficiently high concentrations such that two immiscible phases are formed. Traditional macroscale ATPS are performed in test tubes and require relatively large reagent volumes and are limited to a vertical configuration where the interface lies perpendicular to the direction of gravity. Settling becomes problematic for larger particles and the long diffusion distances mean that separations require significant time. Recent advances in microfluidics systems allow novel configurations of ATPS that are impossible with traditional techniques. Examples are nanoliter ATPS droplets or parallel streams of ATPS which enable new applications and improvements over traditional separations. Microscale ATPS can separate particles in seconds instead of hours using only microliters of reagent.


Amino acids Aqueous two-phase systems (ATPS) Bacteriorhodopsin (BR) Bovine serum albumin (BSA) Carbonic anhydrase Chinese hamster ovary (CHO) Dextran DNA Droplets Glutathione S-transferase Green fluorescent protein acgfp1 Human erythrocytes (RBC) Human leukocytes (WBC) Human T lymphoma (Jurkat) Immunoglobulin G (IgG) Microfluidic Mycotoxin ochratoxin A (OTA) Ovalbumin Partition coefficient Partitioning Plant aggregates (strawberry) Polyethylene glycol Separation α-Amylase β-Galactosidase 


  1. Albertsson P-A (1986) Partition of cell particles and macromolecules. Wiley, HobokenGoogle Scholar
  2. Albertsson P-A (1958) Partition of proteins in liquid polymer-polymer two-phase systems. Nature 182:709–711CrossRefGoogle Scholar
  3. Beijerinck MW (1896) Über eine Eigentümlichkeit der löslichen Stärke. Centralblatt fur Bakteriologie 2:697–699Google Scholar
  4. Benavides J, Rito-Palomares M, Asenjo JA (2011) Downstream processing and product recovery-aqueous two-phase systems. In: MooYoung M (ed) Comprehensive biotechnology, 2nd edn, vol 2. Elsevier, Amsterdam, pp 697–713Google Scholar
  5. Boreyko JB, Mruetusatorn P, Retterer ST, Collier CP (2013) Aqueous two-phase microdroplets with reversible phase transitions. Lab Chip 13:1295–1301. doi: 10.1039/c3lc41122b CrossRefGoogle Scholar
  6. Bungenberg de Jong HG (1949) In: Kruyt HR (ed) Colloid science, vol 2: Reversible Systems. Elsevier, Amsterdam, pp 280–297Google Scholar
  7. Campos C, Park JK, Neuzil P et al (2014) Membrane-free electroextraction using an aqueous two-phase system. RSC Adv 4:49485–49490. doi: 10.1039/C4RA09246E CrossRefGoogle Scholar
  8. Choi YH, Song YS, Kim D-H (2010) Droplet-based microextraction in the aqueous two-phase system. J Chromatogr A 1217:3723–3728. doi: 10.1016/j.chroma.2010.04.015 CrossRefGoogle Scholar
  9. Dobry A, Boyer-Kawenoki F (1947) Phase separation in polymer solution. J Polym Sci Part B Polym Chem 2:90–100. doi: 10.1002/pol.1947.120020111 Google Scholar
  10. Frampton JP, Lai D, Sriram H, Takayama S (2011) Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed Microdevices 13:1043–1051. doi: 10.1007/s10544-011-9574-y CrossRefGoogle Scholar
  11. Geschiere SD, Ziemecka I, van Steijn V et al (2012) Slow growth of the Rayleigh–Plateau instability in aqueous two phase systems. Biomicrofluidics 6:22007–22007–22007–22011. doi: 10.1063/1.3700117 CrossRefGoogle Scholar
  12. Hahn T, Münchow G, Hardt S (2011) Electrophoretic transport of biomolecules across liquid–liquid interfaces. J Phys Condens Matter 23:279502–279509. doi: 10.1088/0953-8984/23/27/279502 CrossRefGoogle Scholar
  13. Hardt S, Hahn T (2012) Microfluidics with aqueous two-phase systems. Lab Chip 12:434–442. doi: 10.1039/C1LC20569B CrossRefGoogle Scholar
  14. Huang Y, Meng T, Guo T et al (2013) Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device. Microfluid Nanofluid 16:483–491. doi: 10.1007/s10404-013-1245-2 CrossRefGoogle Scholar
  15. Huh YS, Jeong C-M, Chang HN et al (2010) Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device. Biomicrofluidics 4:14103. doi: 10.1063/1.3298608 CrossRefGoogle Scholar
  16. Lai D, Frampton JP, Sriram H, Takayama S (2011) Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics. Lab Chip 11:3551–3554. doi: 10.1039/c1lc20560a CrossRefGoogle Scholar
  17. Lai D, Frampton JP, Tsuei M et al (2014) Label-free direct visual analysis of hydrolytic enzyme activity using aqueous two-phase system droplet phase transitions. Anal Chem 86:4052–4057. doi: 10.1021/ac500657k CrossRefGoogle Scholar
  18. Lee S, Wang P, Kun Yap S et al (2012) Tunable spatial heterogeneity in structure and composition within aqueous microfluidic droplets. Biomicrofluidics 6:22005–220058. doi: 10.1063/1.3694841 CrossRefGoogle Scholar
  19. Leung BM, Moraes C, Cavnar SP et al (2015) Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates. J Lab Autom 20:138–145. doi: 10.1177/2211068214563793 CrossRefGoogle Scholar
  20. Liu CL, Nikas YJ, Blankschtein D (1996) Novel bioseparations using two-phase aqueous micellar systems. Biotechnol Bioeng 52:185–192CrossRefGoogle Scholar
  21. Lu Y, Xia Y, Luo G (2010) Phase separation of parallel laminar flow for aqueous two phase systems in branched microchannel. Microfluid Nanofluid 10:1079–1086. doi: 10.1007/s10404-010-0736-7 CrossRefGoogle Scholar
  22. Meagher RJ, Light YK, Singh AK (2008) Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab Chip 8:527–532. doi: 10.1039/b716462a CrossRefGoogle Scholar
  23. Moon B-U, Jones SG, Hwang DK, Tsai SSH (2015) Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures. Lab Chip 15:2437–2444. doi: 10.1039/C5LC00217F CrossRefGoogle Scholar
  24. Münchow G, Hardt S, Kutter JP, Drese KS (2007) Electrophoretic partitioning of proteins in two-phase microflows. Lab Chip 7:98–102. doi: 10.1039/b612669n CrossRefGoogle Scholar
  25. Münchow G, Schönfeld F, Hardt S, Graf K (2008) Protein diffusion across the interface in aqueous two-phase systems. Langmuir 24:8547–8553. doi: 10.1021/la800956j CrossRefGoogle Scholar
  26. Nam K-H, Chang W-J, Hong H et al (2005) Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction. Biomed Microdevices 7:189–195. doi: 10.1007/s10544-005-3025-6 CrossRefGoogle Scholar
  27. Novak U, Lakner M, Plazl I, Znidarsic-Plazl P (2015) Experimental studies and modeling of α-amylase aqueous two-phase extraction within a microfluidic device. Microfluid Nanofluid. doi: 10.1007/s10404-015-1550-z Google Scholar
  28. Shimanovich U, Song Y, Brujic J et al (2015) Multiphase protein microgels. Macromol Biosci 15:501–508. doi: 10.1002/mabi.201400366 CrossRefGoogle Scholar
  29. Silva DFC, Azevedo AM, Fernandes P et al (2014) Determination of aqueous two phase system binodal curves using a microfluidic device. J Chromatogr A 1370:115–120. doi: 10.1016/j.chroma.2014.10.035 CrossRefGoogle Scholar
  30. Silva DFC, Azevedo AM, Fernandes P et al (2012) Design of a microfluidic platform for monoclonal antibody extraction using an aqueous two-phase system. J Chromatogr A 1249:1–7. doi: 10.1016/j.chroma.2012.05.089 CrossRefGoogle Scholar
  31. Shum H, Varnell J, Weitz DA (2012) Microfluidic fabrication of water-in-water (w/w) jets and emulsions. Biomicrofluidics 6:12808–128089. doi: 10.1063/1.3670365 CrossRefGoogle Scholar
  32. Soares RRG, Novo P, Azevedo AM et al (2014) On-chip sample preparation and analyte quantification using a microfluidic aqueous two-phase extraction coupled with an immunoassay. Lab Chip 14:4284–4294. doi: 10.1039/c4lc00695j CrossRefGoogle Scholar
  33. Soo Hoo JR, Walker GM (2009) Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed Microdevices 11:323–329. doi: 10.1007/s10544-008-9238-8 CrossRefGoogle Scholar
  34. Tavana H, Jovic A, Mosadegh B et al (2009) Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat Mater 8:736–741. doi: 10.1038/nmat2515 CrossRefGoogle Scholar
  35. Tsukamoto M, Taira S, Yamamura S et al (2009) Cell separation by an aqueous two-phase system in a microfluidic device. Analyst 134:1994–1998. doi: 10.1039/b909597g CrossRefGoogle Scholar
  36. Vijayakumar K, Gulati S, deMello AJ, Edel JB (2010) Rapid cell extraction in aqueous two-phase microdroplet systems. Chem Sci 1:447–452. doi: 10.1039/c0sc00229a CrossRefGoogle Scholar
  37. Walter H, Brooks D, Fisher D (eds) (1985) Partitioning in aqueous two-phase system: theory, methods, uses, and applications to biotechnology. Academic Press, New YorkGoogle Scholar
  38. Yamada M, Kasim V, Nakashima M et al (2004) Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnol Bioeng 88:489–494. doi: 10.1002/bit.20276 CrossRefGoogle Scholar
  39. Ziemecka I, van Steijn V, Koper GJM et al (2011a) All-aqueous core–shell droplets produced in a microfluidic device. Soft Matter 7:9878–9880. doi: 10.1039/c1sm06517c CrossRefGoogle Scholar
  40. Ziemecka I, van Steijn V, Koper GJM et al (2011b) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11:620–624. doi: 10.1039/c0lc00375a CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations