Skyline Algorithms on Streams of Multidimensional Data

  • Alexander Tzanakas
  • Eleftherios TiakasEmail author
  • Yannis Manolopoulos
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 637)


We compare three algorithms for skyline processing on streams of multidimensional data with centralized processing, namely, the LookOut, Lazy and Eager methods, with different dataset types and dimensionalities, data cardinalities and sliding window sizes. Experimental results for time performance and memory consumption are presented. In addition, the problem of computing the exclusive dominance region in higher dimensions is reviewed and a novel correct solution is proposed.


Memory Consumption Skyline Query Expiry Time Minimum Bounding Rectangle Slide Window Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the ICDE, pp. 421–430 (2001)Google Scholar
  2. 2.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of the ICDE, pp. 717–719 (2003)Google Scholar
  3. 3.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of the SIGMOD, pp. 47–57 (1984)Google Scholar
  4. 4.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the VLDB, pp. 275–286 (2002)Google Scholar
  5. 5.
    Li, X., Wang, Y., Li, X., Wang, Y.: Parallel skyline queries over uncertain data streams in cloud computing environments. Int. J. Web Grid Serv. 10(1), 24–53 (2014)CrossRefGoogle Scholar
  6. 6.
    Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring in two-tier streaming settings. Inf. Syst. 38(1), 68–81 (2013)CrossRefGoogle Scholar
  7. 7.
    Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., Theodoridis, Y.: R-Trees: Theory and Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  8. 8.
    Morse, M., Patel, J., Grosky, W.: Efficient continuous skyline computation. Inf. Sci. 177(17), 3411–3437 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the SIGMOD, pp. 467–478 (2003)Google Scholar
  10. 10.
    Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Tan, K.L., Eng, P.K., Ooi, B.: Efficient progressive skyline computation. In: Proceedings of the VLDB, pp. 301–310 (2001)Google Scholar
  12. 12.
    Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. TKDE 18(3), 377–391 (2006)Google Scholar
  13. 13.
    Tzanakas, A., Tiakas, E., Manolopoulos, Y.: Revisited skyline query algorithms on streams of multidimensional data. Technical report (2016).
  14. 14.
    Wu, P., Agrawal, D., Egecioglu, O., El Abbadi, A.: DeltaSky: optimal maintenance of skyline deletions without exclusive dominance region generation. In: Proceedings of the ICDE, pp. 486–495 (2007)Google Scholar
  15. 15.
    Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continuously maintaining sliding window skylines in a sensor network. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 509–521. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexander Tzanakas
    • 1
  • Eleftherios Tiakas
    • 1
    Email author
  • Yannis Manolopoulos
    • 1
  1. 1.Department of InformaticsAristotle UniversityThessalonikiGreece

Personalised recommendations