Fair Knapsack Pricing for Data Marketplaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9809)

Abstract

Data has become an important economic good. This has led to the development of data marketplaces which facilitate trading by bringing data vendors and data consumers together on one platform. Despite the existence of such infrastructures, data vendors struggle to determine the value their offerings have to customers. This paper explores a novel pricing scheme that allows for price discrimination of customers by selling custom-tailored variants of a data product at a price suggested by a customer. To this end, data quality is adjusted to meet a customer’s willingness to pay. To balance customer preferences and vendor interest, a model is developed, translating fair pricing into a Multiple-Choice Knapsack Problem and making it amenable to an algorithmic solution.

Keywords

Data pricing Knapsack Data marketplaces Data quality 

References

  1. 1.
    Balazinska, M., Howe, B., Koutris, P., Suciu, D., Upadhyaya, P.: A discussion on pricing relational data. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.) Buneman festschrift 2013. LNCS, vol. 8000, pp. 167–173. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Balazinska, M., et al.: Data markets in the cloud: an opportunity for the database community. PVLDB 4(12), 1482–1485 (2011)Google Scholar
  3. 3.
    Batini, C., et al.: Data Quality: Concepts, Methodologies and Techniques. Data-Centric Systems and Applications. Springer, Heidelberg (2006)MATHGoogle Scholar
  4. 4.
    Dudziński, K., et al.: Exact methods for the knapsack problem and its generalizations. Eur. J. Oper. Res. 28(1), 3–21 (1987)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dyer, M., et al.: A branch and bound algorithm for solving the multiple-choice knapsack problem. J. Comput. Appl. Math. 11(2), 231–249 (1984)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dyer, M., et al.: A hybrid dynamic programming/branch-and-bound algorithm for the multiple-choice knapsack problem. J. Comput. Appl. Math. 58(1), 43–54 (1995)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Garcia-Molina, H., et al.: Database Systems: The Complete Book. Pearson Education Limited, Upper Saddle River (2013)Google Scholar
  8. 8.
    Garey, M.R., et al.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  9. 9.
    Gens, G., et al.: An approximate binary search algorithm for the multiple-choice knapsack problem. Inf. Process. Lett. 67(5), 261–265 (1998)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ibaraki, T., et al.: The multiple choice knapsack problem. J. Oper. Res. Soc. Jpn. 21, 59–94 (1978)MATHMathSciNetGoogle Scholar
  11. 11.
    Kellerer, H., et al.: Knapsack Problems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  12. 12.
    Koutris, P., et al.: Toward practical query pricing with QueryMarket. In: SIGMOD Conference, pp. 613–624 (2013)Google Scholar
  13. 13.
    Lawler, E.L.: Fast approximation algorithmsfor knapsack problems. In: 18th Annual Symposium on Foundations of Computer Science, pp. 206–213 (1977)Google Scholar
  14. 14.
    Maier, D., et al.: On the foundations of the universal relation model. ACM TODS 9(2), 283–308 (1984)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets. In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012. LNBIP, vol. 154, pp. 129–144. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Narahari, Y., et al.: Dynamic pricing models forelectronic business. Sadhana (Acad. Proc. Eng. Sci.) 30(2 & 3), 231–256 (2005). Indian Academy of SciencesMATHMathSciNetGoogle Scholar
  17. 17.
    Naumann, F.: Quality-Driven Query Answering for Integrated Information Systems. LNCS, vol. 2261. Springer, Heidelberg (2002)MATHGoogle Scholar
  18. 18.
    Pindyck, R.S., et al.: Mikroökonomie. 8. überarbeitete Auflage. Pearson Deutschland GmbH, München (2013)Google Scholar
  19. 19.
    Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. Eur. J. Oper. Res. 83(2), 394–410 (1995)CrossRefMATHGoogle Scholar
  20. 20.
    Shapiro, C., et al.: Information Rules: A Strategic Guide to the Network Economy. Strategy/Technology/Harvard Business School Press, Boston (1999)Google Scholar
  21. 21.
    Stahl, F.: High-Quality Web Information Provisioning and Quality-Based Data Pricing. Ph.D. thesis. University of Münster (2015)Google Scholar
  22. 22.
    Stahl, F., Vossen, G.: Data quality scores for pricing on data marketplaces. In: Nguyen, N.T., Trawinńki, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS, vol. 9621, pp. 215–224. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  23. 23.
    Tang, R., Amarilli, A., Senellart, P., Bressan, S.: Get a sample for a discount. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part I. LNCS, vol. 8644, pp. 20–34. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Tang, R., Shao, D., Bressan, S., Valduriez, P.: What you pay for is what you get. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 395–409. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ERCISWWU MünsterMünsterGermany
  2. 2.Waikato Management SchoolThe University of WaikatoHamiltonNew Zealand

Personalised recommendations