Integration Integrity for Multigranular Data

  • Stephen J. HegnerEmail author
  • M. Andrea Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9809)


When data from several source schemata are to be integrated, it is essential that the resulting data in the global schema be consistent. This problem has been studied extensively for the monogranular case, in which all domains are flat. However, data involving spatial and/or temporal attributes are often represented at different levels of granularity in different source schemata. In this work, the beginnings of a framework for addressing data integration in multigranular contexts are developed. The contribution is twofold. First, a model of multigranular attributes which is based upon partial orders which are augmented with partial lattice-like operations is developed. These operations are specifically designed to model the kind of dependencies which occur in multigranular modelling, particularly in the presence of aggregation operations. Second, the notion of a thematic multigranular comparison dependency, generalizing ordinary functional and order dependencies but specifically designed to model the kinds of functional and order dependencies which arise in the multigranular context, is developed.



The work of M. Andrea Rodríguez, as well as a six-week visit of Stephen J. Hegner to Concepción, during which many of the ideas reported here were developed, were partly funded by Fondecyt-Conicyt grant number 1140428. Loreto Bravo was initially a collaborator, but was unable to continue due to other commitments. The authors gratefully acknowledge her contributions and insights during the early phases of this investigation.


  1. 1.
    Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Ann. Math. Artif. Intell. 50(3–4), 389–415 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bertino, E., Camossi, E., Bertolotto, M.: Multi-granular spatio-temporal object models: concepts and research directions. In: Norrie, M.C., Grossniklaus, M. (eds.) Object Databases. LNCS, vol. 5936, pp. 132–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  4. 4.
    Bettini, C., Wang, X.S., Jajodia, S.: A general framework for time granularity and its application to temporal reasoning. Ann. Math. Art. Intell. 22, 29–58 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bonham-Carter, G.F.: Geographic Information Systems for Geoscientists: Modelling with GIS. Pergamon, Oxford (1995)Google Scholar
  6. 6.
    Bravo, L., Rodríguez, M.A.: A multi-granular database model. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 344–360. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under integrity constraints. Inf. Syst. 29(2), 147–163 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Camossi, E., Bertolotto, M., Bertino, E.: A multigranular object-oriented framework supporting spatio-temporal granularity conversions. Int. J. Geogr. Inf. Sci. 20(5), 511–534 (2006)CrossRefGoogle Scholar
  9. 9.
    Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  10. 10.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional Horn clauses. J. Log. Program. 3, 267–284 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Egenhofer, M., Clementine, E., Felice, P.D.: Evaluating inconsistency among multiple representations. In: Spatial Data Handling, pp. 901–920 (1995)Google Scholar
  12. 12.
    Egenhofer, M., Sharma, J.: Assessing the consistency of complete and incomplete topological information. Geogr. Syst. 1, 47–68 (1993)Google Scholar
  13. 13.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 6th edn. Addison Wesley, Boston (2011)zbMATHGoogle Scholar
  14. 14.
    Ginsburg, S., Hull, R.: Order dependency in the relational model. Theor. Comput. Sci. 26, 149–195 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (1998)zbMATHGoogle Scholar
  16. 16.
    Hegner, S.J.: Distributivity in incompletely specified type hierarchies: theory and computational complexity. In: Dörre, J. (ed.) Computational Aspects of Constraint-Based Linguistic Description II, DYANA, pp. 29–120 (1994)Google Scholar
  17. 17.
    Iftikhar, N., Pedersen, T.B.: Using a time granularity table for gradual granular data aggregation. Fundam. Inform. 132(2), 153–176 (2014)Google Scholar
  18. 18.
    Kuijpers, B., Paredaens, J., den Bussche, J.V.: On topological elementary equivalence of spatial databases. In: ICDT, pp. 432–446 (1997)Google Scholar
  19. 19.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L., Abiteboul, S., Kolaitis, P.G. (eds.) PODS, pp. 233–246. ACM (2002)Google Scholar
  20. 20.
    Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Coop. Inf. Syst. 7(1), 55–76 (1998)CrossRefGoogle Scholar
  21. 21.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)zbMATHGoogle Scholar
  22. 22.
    Ng, W.: An extension of the relational data model to incorporate ordered domains. ACM Trans. Database Syst. 26(3), 344–383 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  24. 24.
    Rodríguez, M.A., Bertossi, L.E., Marileo, M.C.: Consistent query answering under spatial semantic constraints. Inf. Syst. 38(2), 244–263 (2013)CrossRefGoogle Scholar
  25. 25.
    Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of order dependencies. Proc. VLDB Endow. 5(11), 1220–1231 (2012)CrossRefGoogle Scholar
  26. 26.
    Tryfona, N., Egenhofer, M.J.: Consistency among parts and aggregates: a computational model. T. GIS 1(3), 189–206 (1996)CrossRefGoogle Scholar
  27. 27.
    Wijsen, J., Ng, R.T.: Temporal dependencies generalized for spatial and other dimensions. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 189–203. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computing ScienceUmeå UniversityUmeåSweden
  2. 2.Departamento Ingeniería Informática y Ciencias de la ComputaciónUniversidad de ConcepciónConcepciónChile

Personalised recommendations