Autism Spectrum Disorders

Chapter

Abstract

Autism spectrum disorders (ASD) are characterized by deficits in sociability and communication, as well as severe anxiety and stereotypic movements. Moreover, over 50 % of children with ASD experience atopic symptoms indicative of mast cell (MC) activation (asthma, eczema, food allergies and/or intolerance) which correlate with the presence of brain auto-antibodies. ASD pathogenesis is unknown preventing the development of effective treatments. As a result, more than 70 % of children with ASD are prescribed psychopharmacologic agents that often have little benefit and serious adverse effects. Increasing evidence indicates that local brain inflammation is involved in ASD. In particular, there is activation and proliferation of microglia, which communicate with MCs, located perivascularly primarily in the thalamus and hypothalamus, as well as the lining of the ventricles. MCs are stimulated by corticotropin-releasing hormone (CRH) and neurotensin (NT) secreted from the hypothalamus under stress; these peptides can also induce each other’s surface receptors leading to autocrine and paracrine effects. Stimulated MCs release inflammatory and neurotoxic mediators that disrupt the blood-brain barrier (BBB), activate microglia and cause focal inflammation. CRH and NT are significantly increased in serum of ASD children compared to normotypic controls. Addressing the “allergic” and anxiety symptoms would not only improve the health of the patients, but could also potentially reduce the core symptoms of ASD. Use of the natural anti-inflammatory flavonoid luteolin, in an olive fruit oil preparation to increase oral absorption, appears to provide significant benefit and should be investigated further. Treatment approaches targeting brain inflammation could have a great benefit.

Keywords

Autism spectrum disorders (ASD) Corticotropin-releasing hormone (CRH) Mast cells (MCs) Microglia Neurotensin (NT) 

Notes

Acknowledgements

Aspects of the work discussed were funded in part by the Autism Research Institute, the National Autism Association, Safe Minds and The Jane Botsford Johnson Foundation.

Competing Interests 

The authors declare they have no competing interests.

Disclosures 

TCT has been awarded US Patents No 8,268,365; 9,050,275 and 9,176,146 covering the treatment of brain inflammation and ASD.

References

  1. Abdallah MW, Larsen N, Grove J, Norgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM (2012) Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun 26:170–176PubMedCrossRefGoogle Scholar
  2. Abdulla A, Zhao X, Yang F (2013) Natural polyphenols inhibit lysine-specific demethylase-1. J Biochem Pharmacol Res 1:56–63PubMedPubMedCentralGoogle Scholar
  3. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452PubMedPubMedCentralCrossRefGoogle Scholar
  4. Adams JB, Audhya T, Donough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr 11:111PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aldinger KA, Plummer JT, Qiu S, Levitt P (2011) SnapShot: genetics of autism. Neuron 72:418PubMedCrossRefGoogle Scholar
  6. Alevizos M, Karagkouni A, Vasiadi M, Sismanopoulos N, Makris M, Kalogeromitros D, TheoharidesTC (2013) Rupatadine inhibits inflammatory mediator release from human LAD2 cultured mast cells stimulated by PAF.Ann Allergy Asthma Immunol 111:524–527Google Scholar
  7. Alstadhaug KB (2014) Histamine in migraine and brain. Headache 54:246–259PubMedCrossRefGoogle Scholar
  8. Anagnostou E, Soorya L, Brian J, Dupuis A, Mankad D, Smile S, Jacob S (2014) Intranasal oxytocin in the treatment of autism spectrum disorders: a review of literature and early safety and efficacy data in youth. Brain Res 1580:188–198PubMedCrossRefGoogle Scholar
  9. Angelidou A, Francis K, Vasiadi M, Alysandratos K-D, Zhang B, Theoharides A, Lykouras L, Kalogeromitros D, Theoharides T (2010) Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflam 7:48CrossRefGoogle Scholar
  10. Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC (2011) Brief report: "allergic symptoms" in children with autism spectrum disorders. More than meets the eye? J Autism Dev Disord 41:1579–1585PubMedCrossRefGoogle Scholar
  11. Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC (2012) Perinatal stress, brain inflammation and risk of autism-review and proposal. BMC Pediatr 12:89PubMedPubMedCentralCrossRefGoogle Scholar
  12. Antonelli T, Ferraro L, Fuxe K, Finetti S, Fournier J, Tanganelli S, De MM, Tomasini MC (2004) Neurotensin enhances endogenous extracellular glutamate levels in primary cultures of rat cortical neurons: involvement of neurotensin receptor in NMDA induced excitotoxicity. Cereb Cortex 14:466–473PubMedCrossRefGoogle Scholar
  13. Asadi S, Theoharides TC (2012) Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J Neuroinflam 9:85CrossRefGoogle Scholar
  14. Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Alysandratos KD, Theoharides TC (2010) Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. Int J Immunopathol Pharmacol 23:1015–1020PubMedGoogle Scholar
  15. Ashwood P, Van de Water J (2004) Is autism an autoimmune disease? Autoimmun Rev 3:557–562PubMedCrossRefGoogle Scholar
  16. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de WJ (2011) Altered T cell responses in children with autism. Brain Behav Immun 25:840–849PubMedCrossRefGoogle Scholar
  17. Bakermans-Kranenburg MJ, van IJM (2013) Sniffing around oxytocin: review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Transl. Psychiatry 3:e258Google Scholar
  18. Banuelos-Cabrera I, Valle-Dorado MG, Aldana BI, Orozco-Suarez SA, Rocha L (2014) Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders. Arch Med Res 45:677–686PubMedCrossRefGoogle Scholar
  19. Baptista FI, Henriques AG, Silva AM, Wiltfang J, da Cruz e Silva OA (2014) Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chem Neurosci 5:83–92Google Scholar
  20. Barreau F, Salvador-Cartier C, Houdeau E, Bueno L, Fioramonti J (2008) Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut 57:582–590PubMedCrossRefGoogle Scholar
  21. Beaudet AL (2012) Neuroscience. Preventable forms of autism? Science 338:342–343PubMedPubMedCentralCrossRefGoogle Scholar
  22. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, Steiner J, Connor TJ, Harkin A, Versnel MA, Drexhage HA (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92:959–975PubMedCrossRefGoogle Scholar
  23. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML (2005) Timing of prenatal stressors and autism. J Autism DevDisord 35:471–478CrossRefGoogle Scholar
  24. Blank U, Rivera J (2004) The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 25:266–273PubMedCrossRefGoogle Scholar
  25. Blenner S, Reddy A, Augustyn M (2011) Diagnosis and management of autism in childhood. BMJ 343:d6238PubMedCrossRefGoogle Scholar
  26. Boudouda HB, Zeghib A, Karioti A, Bilia AR, Ozturk M, Aouni M, Kabouche A, Kabouche Z (2015) Antibacterial, antioxidant, anti-cholinesterase potential and flavonol glycosides of Biscutella raphanifolia (Brassicaceae). Pak J Pharm Sci 28:153–158PubMedGoogle Scholar
  27. Braunschweig D, Van de Water J (2012) Maternal autoantibodies in autism. Arch Neurol 69:693–699PubMedPubMedCentralCrossRefGoogle Scholar
  28. Broadstock M, Doughty C, Eggleston M (2007) Systematic review of the effectiveness of pharmacological treatments for adolescents and adults with autism spectrum disorder. Autism 11:335–348PubMedCrossRefGoogle Scholar
  29. Bryniarski K, Ptak W, Jayakumar A, Pullmann K, Caplan MJ, Chairoungdua A, Lu J, Adams BD, Sikora E, Nazimek K, Marquez S, Kleinstein SH, Sangwung P, Iwakiri Y, Delgato E, Redegeld F, Blokhuis BR, Wojcikowski J, Daniel AW, Groot KT, Askenase PW (2013) Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol 132:170–181PubMedPubMedCentralCrossRefGoogle Scholar
  30. Buescher AV, Cidav Z, Knapp M, Mandell DS (2014) Costs of autism spectrum disorders in the United kingdom and the United States. JAMA Pediatr 168:721–728PubMedCrossRefGoogle Scholar
  31. Cao J, Papadopoulou N, Kempuraj D, Boucher WS, Sugimoto K, Cetrulo CL, Theoharides TC (2005) Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol 174:7665–7675PubMedCrossRefGoogle Scholar
  32. Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631PubMedGoogle Scholar
  33. Chen Z, Trapp BD (2015) Microglia and neuroprotection., J NeurochemGoogle Scholar
  34. Chen HQ, Jin ZY, Wang XJ, Xu XM, Deng L, Zhao JW (2008) Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci Lett 448:175–179PubMedCrossRefGoogle Scholar
  35. Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, Chen TJ, Pan TL, Bai YM (2014a) Is atopy in early childhood a risk factor for ADHD and ASD? a longitudinal study. J Psychosom Res 77:316–321PubMedCrossRefGoogle Scholar
  36. Chen Z, Zheng S, Li L, Jiang H (2014b) Metabolism of flavonoids in human: a comprehensive review. Curr Drug Metab 15:48–61PubMedCrossRefGoogle Scholar
  37. Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36:361–365PubMedCrossRefGoogle Scholar
  38. Ching H, Pringsheim T (2012) Aripiprazole for autism spectrum disorders (ASD). Cochrane Database Syst Rev 5, CD009043Google Scholar
  39. Cocchiara R, Albeggiani G, Lampiasi N, Bongiovanni A, Azzolina A, Geraci D (1999) Histamine and tumor necrosis factor-a production from purified rat brain mast cells mediated by substance P. Neuroreport 10:575–578PubMedCrossRefGoogle Scholar
  40. Corcoran MP, McKay DL, Blumberg JB (2012) Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatr 31:176–189PubMedCrossRefGoogle Scholar
  41. Dahlgren J, Samuelsson AM, Jansson T, Holmang A (2006) Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res 60:147–151PubMedCrossRefGoogle Scholar
  42. de Theije CG, Wu J, Koelink PJ, Korte-Bouws GA, Borre Y, Kas MJ, da Lopes SS, Korte SM, Olivier B, Garssen J, Kraneveld AD (2014) Autistic-like behavioural and neurochemical changes in a mouse model of food allergy. Behav Brain Res 261:265–274PubMedCrossRefGoogle Scholar
  43. Delong G (2011) A positive association found between autism prevalence and childhood vaccination uptake across the U.S. population. J Toxicol Environ Health A 74:903–916PubMedCrossRefGoogle Scholar
  44. Derecki NC, Privman E, Kipnis J (2010) Rett syndrome and other autism spectrum disorders--brain diseases of immune malfunction ? Mol Psychiatry 15:355–363PubMedPubMedCentralCrossRefGoogle Scholar
  45. Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008) How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. NeuroToxicol 29:190–201CrossRefGoogle Scholar
  46. Developmental Disabilities Monitoring Network Surveillance Year (2010) Principal InvestigatorsCenters for Disease Control and Prevention (CDC) (2014) Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 63:1–21Google Scholar
  47. Dickerson AS, Rahbar MH, Han I, Bakian AV, Bilder DA, Harrington RA, Pettygrove S, Durkin M, Kirby RS, Wingate MS, Tian LH, Zahorodny WM, Pearson DA, Moye LA III, Baio J (2015) Autism spectrum disorder prevalence and proximity to industrial facilities releasing arsenic, lead or mercury. Sci Total Environ 536:245–251PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, Moehle C, Fuchshofer R, Langmann T (2010) Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 7:3PubMedPubMedCentralCrossRefGoogle Scholar
  49. Donelan J, Boucher W, Papadopoulou N, Lytinas M, Papaliodis D, Theoharides TC (2006) Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A 103:7759–7764PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ecker C, Spooren W, Murphy D (2013) Developing new pharmacotherapies for autism. J Intern Med 274:308–320PubMedCrossRefGoogle Scholar
  51. Enoksson M, Lyberg K, Moller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C (2011) Mast cells as sensors of cell injury through IL-33 recognition. J Immunol 186:2523–2528PubMedCrossRefGoogle Scholar
  52. Esposito P, Gheorghe D, Kandere K, Pang X, Conally R, Jacobson S, Theoharides TC (2001) Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res 888:117–127PubMedCrossRefGoogle Scholar
  53. Esposito P, Chandler N, Kandere-Grzybowska K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC (2002) Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 303:1061–1066PubMedCrossRefGoogle Scholar
  54. Farr SA, Price TO, Dominguez LJ, Motisi A, Saiano F, Niehoff ML, Morley JE, Banks WA, Ercal N, Barbagallo M (2012) Extra virgin olive oil improves learning and memory in SAMP8 mice. J Alzheimers Dis 28:81–92PubMedGoogle Scholar
  55. Fatokun AA, Liu JO, Dawson VL, Dawson TM (2013) Identification through high-throughput screening of 4'-methoxyflavone and 3',4'-dimethoxyflavone as novel neuroprotective inhibitors of parthanatos. Br J Pharmacol 169:1263–1278PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9:290–298PubMedCrossRefGoogle Scholar
  57. Fombonne E (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591–598PubMedCrossRefGoogle Scholar
  58. Franco JL, Posser T, Missau F, Pizzolatti MG, Dos Santos AR, Souza DO, Aschner M, Rocha JB, Dafre AL, Farina M (2010) Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 30:272–278PubMedPubMedCentralCrossRefGoogle Scholar
  59. Frisch M, Simonsen J (2015) Ritual circumcision and risk of autism spectrum disorder in 0- to 9-year-old boys: national cohort study in Denmark. J R Soc Med 108:266–279PubMedPubMedCentralCrossRefGoogle Scholar
  60. Frye RE, Rossignol D, Casanova MF, Brown GL, Martin V, Edelson S, Coben R, Lewine J, Slattery JC, Lau C, Hardy P, Fatemi SH, Folsom TD, Macfabe D, Adams JB (2013) A review of traditional and novel treatments for seizures in autism spectrum disorder: findings from a systematic review and expert panel. Front Public Health 1:31PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fu X, Zhang J, Guo L, Xu Y, Sun L, Wang S, Feng Y, Gou L, Zhang L, Liu Y (2014) Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 126:122–130PubMedCrossRefGoogle Scholar
  62. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486PubMedPubMedCentralCrossRefGoogle Scholar
  63. Geier DA, Kern JK, King PG, Sykes LK, Geier MR (2012) Hair toxic metal concentrations and autism spectrum disorder severity in young children. Int J Environ Res Public Health 9:4486–4497PubMedPubMedCentralCrossRefGoogle Scholar
  64. Genuneit J, Braig S, Brandt S, Wabitsch M, Florath I, Brenner H, Rothenbacher D (2014) Infant atopic eczema and subsequent attention-deficit/hyperactivity disorder - A prospective birth cohort study. Pediatr Allergy Immunol 25:51–56PubMedCrossRefGoogle Scholar
  65. Ghanizadeh A (2010) Targeting neurotensin as a potential novel approach for the treatment of autism. J Neuroinflammation 7:58PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ghosh A, Michalon A, Lindemann L, Fontoura P, Santarelli L (2013) Drug discovery for autism spectrum disorder: challenges and opportunities. Nat Rev Drug Discov 12:777–790PubMedCrossRefGoogle Scholar
  67. Gillott A, Standen PJ (2007) Levels of anxiety and sources of stress in adults with autism. J Intellect Disabil 11:359–370PubMedCrossRefGoogle Scholar
  68. Goedert M, Lightman SL, Mantyh PW, Hunt SP, Emson PC (1985) Neurotensin-like immunoreactivity and neurotensin receptors in the rat hypothalamus and in the neurointermediate lobe of the pituitary gland. Brain Res 358:59–69PubMedCrossRefGoogle Scholar
  69. Gonzalez-Correa JA, Navas MD, Lopez-Villodres JA, Trujillo M, Espartero JL, De La Cruz JP (2008) Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation. Neurosci Lett 446:143–146PubMedCrossRefGoogle Scholar
  70. Gordon WA, Cantor JB, Johanning E, Charatz HJ, Ashman TA, Breeze JL, Haddad L, Abramowitz S (2004) Cognitive impairment associated with toxigenic fungal exposure: a replication and extension of previous findings. Appl Neuropsychol 11:65–74PubMedCrossRefGoogle Scholar
  71. Gregory SG, Anthopolos R, Osgood CE, Grotegut CA, Miranda ML (2013) Association of autism with induced or augmented childbirth in North Carolina Birth Record (1990-1998) and Education Research (1997-2007) databases. JAMA Pediatr 167:959–966PubMedCrossRefGoogle Scholar
  72. Grosso C, Valentao P, Ferreres F, Andrade PB (2013) The use of flavonoids in central nervous system disorders. Curr Med Chem 20:4697–4719CrossRefGoogle Scholar
  73. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5:5748PubMedPubMedCentralCrossRefGoogle Scholar
  74. Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241PubMedCrossRefGoogle Scholar
  75. Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71:444–457PubMedCrossRefGoogle Scholar
  76. Hagedorn M, Carter VL, Leong JC, Kleinhans FW (2010) Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology 60:147–158PubMedCrossRefGoogle Scholar
  77. Hanrahan JR, Chebib M, Johnston GA (2011) Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 163:234–245PubMedPubMedCentralCrossRefGoogle Scholar
  78. Harwood M, nielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC (2007) A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol 45:2179–2205Google Scholar
  79. Heilbrun LP, Palmer RF, Jaen CR, Svoboda MD, Miller CS, Perkins J (2015) Maternal chemical and drug intolerances: potential risk factors for autism and Attention Deficit Hyperactivity Disorder (ADHD). J Am Board Fam Med 28:461–470PubMedCrossRefGoogle Scholar
  80. Hendren RL (2013) Autism: biomedical complementary treatment approaches. Child Adolesc Psychiatr Clin N Am 22(443-56):viGoogle Scholar
  81. Herbert MR (2010) Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 23:103–110PubMedCrossRefGoogle Scholar
  82. Ho L, Ferruzzi MG, Janle EM, Wang J, Gong B, Chen TY, Lobo J, Cooper B, Wu QL, Talcott ST, Percival SS, Simon JE, Pasinetti GM (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27:769–781PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hollman PC, Katan MB (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51:305–310PubMedCrossRefGoogle Scholar
  84. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 62:1276–1282PubMedGoogle Scholar
  85. Hollocks MJ, Howlin P, Papadopoulos AS, Khondoker M, Simonoff E (2014) Differences in HPA-axis and heart rate responsiveness to psychosocial stress in children with autism spectrum disorders with and without co-morbid anxiety. Psychoneuroendocrinology 46:32–45PubMedCrossRefGoogle Scholar
  86. Hosenbocus S, Chahal R (2013) Memantine: a review of possible uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry 22:166–171PubMedPubMedCentralGoogle Scholar
  87. Hsiao EY, McBride SW, Chow J, Mazmanian SK, Patterson PH (2012) Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A 109:12776–12781PubMedPubMedCentralCrossRefGoogle Scholar
  88. Huang M, Pang X, Karalis K, Theoharides TC (2003) Stress-induced interleukin-6 release in mice is mast cell-dependent and more pronounced in Apolipoprotein E knockout mice. Cardiovasc Res 59:241–249PubMedCrossRefGoogle Scholar
  89. Jager AK, Saaby L (2011) Flavonoids and the CNS. Molecules 16:1471–1485PubMedCrossRefGoogle Scholar
  90. Jang S, Kelley KW, Johnson RW (2008) Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci U S A 105:7534–7539PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jang S, Dilger RN, Johnson RW (2010a) Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. J Nutr 140:1892–1898PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010b) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107:2687–2692PubMedPubMedCentralCrossRefGoogle Scholar
  93. Jedrychowski W, Maugeri U, Perera F, Stigter L, Jankowski J, Butscher M, Mroz E, Flak E, Skarupa A, Sowa A (2011) Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland. Physiol Behav 104:989–995PubMedPubMedCentralCrossRefGoogle Scholar
  94. Johnson RA, Lam M, Punzo AM, Li H, Lin BR, Ye K, Mitchell GS, Chang Q (2012) 7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome. J Appl Physiol 112:704–710PubMedCrossRefGoogle Scholar
  95. Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62PubMedCrossRefGoogle Scholar
  96. Jones QR, Warford J, Rupasinghe HP, Robertson GS (2012) Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 33:602–610PubMedCrossRefGoogle Scholar
  97. Jyonouchi H (2010) Autism spectrum disorders and allergy: observation from a pediatric allergy/immunology clinic. Expert Rev Clin Immunol 6:397–411PubMedCrossRefGoogle Scholar
  98. Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120:170–179PubMedCrossRefGoogle Scholar
  99. Jyonouchi H, Sun S, Itokazu N (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46:76–84PubMedCrossRefGoogle Scholar
  100. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9:1215–1223PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kalogeromitros D, Syrigou EI, Makris M, Kempuraj D, Stavrianeas NG, Vasiadi M, Theoharides TC (2007) Nasal provocation of patients with allergic rhinitis and the hypothalamic-pituitary-adrenal axis. Annals Allergy, Asthma, Immunology 98:269–273CrossRefGoogle Scholar
  102. Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, Athanassiou A, Theoharides TC (2003) IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol 171:4830–4836PubMedCrossRefGoogle Scholar
  103. Kao TK, Ou YC, Lin SY, Pan HC, Song PJ, Raung SL, Lai CY, Liao SL, Lu HC, Chen CJ (2011) Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J Nutr Biochem 22:612–624PubMedCrossRefGoogle Scholar
  104. Karagkouni A, Alevizos M, Theoharides TC (2013) Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 12:947–953PubMedCrossRefGoogle Scholar
  105. Kawanishi S, Oikawa S, Murata M (2005) Evaluation for safety of antioxidant chemopreventive agents. Antioxid Redox Signal 7:1728–1739PubMedCrossRefGoogle Scholar
  106. Kawikova I, Askenase PW (2014) Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 1617:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  107. Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassiou A, Theoharides TC (2004) Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 145:43–48PubMedCrossRefGoogle Scholar
  108. Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo CL, Theoharides TC (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 145:934–944PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kempuraj D, Tagen M, Iliopoulou BP, Clemons A, Vasiadi M, Boucher W, House M, Wolferg A, Theoharides TC (2008) Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell dependent stimulation of Jurkat T cells. Br J Pharmacol 155:1076–1084PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kempuraj D, Asadi S, Zhang B, Manola A, Hogan J, Peterson E, Theoharides TC (2010) Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 7:20PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H (2000) Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy 30:501–508PubMedCrossRefGoogle Scholar
  112. King BH, Hollander E, Sikich L, McCracken JT, Scahill L, Bregman JD, Donnelly CL, Anagnostou E, Dukes K, Sullivan L, Hirtz D, Wagner A, Ritz L (2009) Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism. Arch Gen Psychiatry 66:583–590PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyck PC (2009) Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 5:1395–1403CrossRefGoogle Scholar
  114. Kritas SK, Caraffa A, Antinolfi P, Saggini A, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Pandolfi F, Cerulli G, Conti P (2014a) Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol 27:15–19PubMedGoogle Scholar
  115. Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Conti P (2014b) Corticotropin-releasing hormone, microglia and mental disorders. Int J Immunopathol Pharmacol 27:163–167PubMedGoogle Scholar
  116. Kumar A, Goyal R (2008) Quercetin protects against acute immobilization stress-induced behaviors and biochemical alterations in mice. J Med Food 11:469–473PubMedCrossRefGoogle Scholar
  117. Kushki A, Drumm E, Pla MM, Tanel N, Dupuis A, Chau T, Anagnostou E (2013) Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders. PLoS One 8, e59730PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910PubMedCrossRefGoogle Scholar
  119. Lake JK, Weiss JA, Dergal J, Lunsky Y (2014) Child, parent, and service predictors of psychotropic polypharmacy among adolescents and young adults with an autism spectrum disorder. J Child Adolesc Psychopharmacol 24:486–493PubMedCrossRefGoogle Scholar
  120. Lanni KE, Schupp CW, Simon D, Corbett BA (2012) Verbal ability, social stress, and anxiety in children with autistic disorder. Autism 16:123–138PubMedCrossRefGoogle Scholar
  121. Leigh JP, Du J (2015) Brief report: forecasting the economic burden of Autism in 2015 and 2025 in the United States. J Autism Dev, DisordGoogle Scholar
  122. Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB III, Lee VM (2009a) Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem 110:1339–1351PubMedPubMedCentralCrossRefGoogle Scholar
  123. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009b) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lin TY, Lu CW, Chang CC, Huang SK, Wang SJ (2011) Luteolin inhibits the release of glutamate in rat cerebrocortical nerve terminals. J Agric Food Chem 59:8458–8466PubMedCrossRefGoogle Scholar
  125. Liu R, Gao M, Qiang GF, Zhang TT, Lan X, Ying J, Du GH (2009) The anti-amnesic effects of luteolin against amyloid beta(25-35) peptide-induced toxicity in mice involve the protection of neurovascular unit. Neuroscience 162:1232–1243PubMedCrossRefGoogle Scholar
  126. Liu R, Zhang TT, Zhou D, Bai XY, Zhou WL, Huang C, Song JK, Meng FR, Wu CX, Li L, Du GH (2013a) Quercetin protects against the Abeta(25-35)-induced amnesic injury: involvement of inactivation of rage-mediated pathway and conservation of the NVU. Neuropharmacology 67:419–431PubMedCrossRefGoogle Scholar
  127. Liu Y, Tian X, Gou L, Sun L, Ling X, Yin X (2013b) Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res Bull 94C:23–29CrossRefGoogle Scholar
  128. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, Li C, Shang Y, Huang T, Zhang L (2014) Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav Brain Res 267:178–188PubMedCrossRefGoogle Scholar
  129. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, Bureau F, Desmet CJ (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17:996–1002PubMedCrossRefGoogle Scholar
  130. Marti LF (2014) Dietary interventions in children with autism spectrum disorders—an updated review of the research evidence. Curr Clin Pharmacol 9:335–349PubMedCrossRefGoogle Scholar
  131. Martin S, Vincent JP, Mazella J (2003) Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci 23:1198–1205PubMedGoogle Scholar
  132. Martinez-Lapiscina EH, Clavero P, Toledo E, San JB, Sanchez-Tainta A, Corella D, Lamuela-Raventos RM, Martinez JA, Martinez-Gonzalez MA (2013) Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging 17:544–552PubMedCrossRefGoogle Scholar
  133. Mazurek MO, Vasa RA, Kalb LG, Kanne SM, Rosenberg D, Keefer A, Murray DS, Freedman B, Lowery LA (2013) Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol 41:165–176PubMedCrossRefGoogle Scholar
  134. McKee AS, Burchill MA, Munks MW, Jin L, Kappler JW, Friedman RS, Jacobelli J, Marrack P (2013) Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc Natl Acad Sci U S A 110:E1122–E1131PubMedPubMedCentralCrossRefGoogle Scholar
  135. McKittrick CM, Lawrence CE, Carswell HV (2015) Mast cells promote blood brain barrier breakdown and neutrophil infiltration in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 35:638–647PubMedPubMedCentralCrossRefGoogle Scholar
  136. Mecocci P, Tinarelli C, Schulz RJ, Polidori MC (2014) Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol 5:147PubMedPubMedCentralCrossRefGoogle Scholar
  137. Middleton EJ, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol Rev 52:673–751PubMedGoogle Scholar
  138. Miller LG, Lee-Parritz A, Greenblatt DJ, Theoharides TC (1988) High affinity benzodiazepine receptors on rat peritoneal mast cells and RBL-1 cells: binding characteristics and effects on granule secretion. Pharmacology 36:52–60PubMedCrossRefGoogle Scholar
  139. Mohagheghi F, Bigdeli MR, Rasoulian B, Zeinanloo AA, Khoshbaten A (2010) Dietary virgin olive oil reduces blood brain barrier permeability, brain edema, and brain injury in rats subjected to ischemia-reperfusion. ScientificWorldJournal 10:1180–1191PubMedCrossRefGoogle Scholar
  140. Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, Pour MR (2011) The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine 18:170–175PubMedCrossRefGoogle Scholar
  141. Mohiuddin S, Ghaziuddin M (2013) Psychopharmacology of autism spectrum disorders: a selective review. Autism 17:645–654PubMedCrossRefGoogle Scholar
  142. Mohr DC, Goodkin DE, Bacchetti P, Boudewyn AC, Huang L, Marrietta P, Cheuk W, Dee B (2000) Psychological stress and the subsequent appearances of new brain MRI lesions in MS. Neurology 55:55–61PubMedCrossRefGoogle Scholar
  143. Molteni M, Nobile M, Cattaneo D, Radice S, Clementi E (2014) Potential benefits and limits of psychopharmacological therapies in pervasive developmental disorders. Curr Clin Pharmacol 9:365–376PubMedCrossRefGoogle Scholar
  144. Morgan JT, Chana G, Abramson I, Semendeferi K, Courchesne E, Everall IP (2012) Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism. Brain Res 1456:72–81PubMedCrossRefGoogle Scholar
  145. Mostafa GA, Al-Ayadhi LY (2013) The possible relationship between allergic manifestations and elevated serum levels of brain specific auto-antibodies in autistic children. J Neuroimmunol 261:77–81PubMedCrossRefGoogle Scholar
  146. Moussion C, Ortega N, Girard JP (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 3, e3331PubMedPubMedCentralCrossRefGoogle Scholar
  147. Mullol J, Bousquet J, Bachert C, Canonica GW, Gimenez-Arnau A, Kowalski ML, Simons FE, Maurer M, Ryan D, Scadding G (2015) Update on rupatadine in the management of allergic disorders. Allergy 70(Suppl 100):1–24PubMedCrossRefGoogle Scholar
  148. Munkholm K, Vinberg M, Vedel KL (2013) Cytokines in bipolar disorder: a systematic review and meta-analysis. J Affect Disord 144:16–27PubMedCrossRefGoogle Scholar
  149. Mustain WC, Rychahou PG, Evers BM (2011) The role of neurotensin in physiologic and pathologic processes. Curr Opin Endocrinol Diabetes Obes 18:75–82PubMedCrossRefGoogle Scholar
  150. Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK (2011) A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 6, e19488PubMedPubMedCentralCrossRefGoogle Scholar
  151. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248PubMedCrossRefGoogle Scholar
  152. Nakae S, Suto H, Berry GJ, Galli SJ (2007) Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 109:3640–3648PubMedPubMedCentralCrossRefGoogle Scholar
  153. Ohnmacht C, Voehringer D (2010) Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. J Immunol 184:344–350PubMedCrossRefGoogle Scholar
  154. Olfson M, Druss BG, Marcus SC (2015) Trends in mental health care among children and adolescents. N Engl J Med 372:2029–2038PubMedCrossRefGoogle Scholar
  155. Olszewski MB, Groot AJ, Dastych J, Knol EF (2007) TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J Immunol 178:5701–5709PubMedCrossRefGoogle Scholar
  156. Onore C, Careaga M, Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392PubMedCrossRefGoogle Scholar
  157. Pang X, Letourneau R, Rozniecki JJ, Wang L, Theoharides TC (1996) Definitive characterization of rat hypothalamic mast cells. Neuroscience 73:889–902PubMedCrossRefGoogle Scholar
  158. Parikh MS, Kolevzon A, Hollander E (2008) Psychopharmacology of aggression in children and adolescents with autism: a critical review of efficacy and tolerability. J Child Adolesc Psychopharmacol 18:157–178PubMedCrossRefGoogle Scholar
  159. Park HH, Lee S, Son HY, Park SB, Kim MS, Choi EJ, Singh TS, Ha JH, Lee MG, Kim JE, Hyun MC, Kwon TK, Kim YH, Kim SH (2008) Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch Pharm Res 31:1303–1311PubMedCrossRefGoogle Scholar
  160. Parker-Athill E, Luo D, Bailey A, Giunta B, Tian J, Shytle RD, Murphy T, Legradi G, Tan J (2009) Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J Neuroimmunol 217:20–27PubMedCrossRefGoogle Scholar
  161. Passamonti S, Terdoslavich M, Franca R, Vanzo A, Tramer F, Braidot E, Petrussa E, Vianello A (2009) Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab 10:369–394PubMedCrossRefGoogle Scholar
  162. Pitt J, Roth W, Lacor P, Smith AB III, Blankenship M, Velasco P, De FF, Breslin P, Klein WL (2009) Alzheimer’s-associated Abeta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol Appl Pharmacol 240:189–197PubMedPubMedCentralCrossRefGoogle Scholar
  163. Preti A, Melis M, Siddi S, Vellante M, Doneddu G, Fadda R (2014) Oxytocin and autism: a systematic review of randomized controlled trials. J Child Adolesc Psychopharmacol 24:54–68PubMedCrossRefGoogle Scholar
  164. Rais TB, Rais A (2014) Association between antidepressants use during pregnancy and autistic spectrum disorders: a meta-analysis. Innov Clin Neurosci 11:18–22PubMedPubMedCentralGoogle Scholar
  165. Regitz C, Dussling LM, Wenzel U (2014) Amyloid-beta (Abeta(1-42))-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 58:1931–1940PubMedCrossRefGoogle Scholar
  166. Roberts AL, Koenen KC, Lyall K, Robinson EB, Weisskopf MG (2015) Association of autistic traits in adulthood with childhood abuse, interpersonal victimization, and posttraumatic stress. Child Abuse Negl 45:135–142PubMedPubMedCentralCrossRefGoogle Scholar
  167. Rocha SM, Pires J, Esteves M, Graca B, Bernardino L (2014) Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 8:120PubMedPubMedCentralCrossRefGoogle Scholar
  168. Rodgers J, Glod M, Connolly B, McConachie H (2012) The relationship between anxiety and repetitive behaviours in autism spectrum disorder. J Autism Dev Disord 42:2404–2409PubMedCrossRefGoogle Scholar
  169. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33:9003–9012PubMedPubMedCentralCrossRefGoogle Scholar
  170. Rodriguez JI, Kern JK (2011) Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol 7:205–213PubMedPubMedCentralCrossRefGoogle Scholar
  171. Rogers SJ, Vismara LA (2008) Evidence-based comprehensive treatments for early autism. J Clin Child Adolesc Psychol 37:8–38PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ronald A, Pennell CE, Whitehouse AJ (2010) Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front Psychol 1:223PubMedGoogle Scholar
  173. Rossi CC, Van de WJ, Rogers SJ, Amaral DG (2011) Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain Behav Immun 25:1123–1135PubMedPubMedCentralCrossRefGoogle Scholar
  174. Rossignol DA, Frye RE (2012a) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17:389–401PubMedCrossRefGoogle Scholar
  175. Rossignol DA, Frye RE (2012b) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17:290–314PubMedCrossRefGoogle Scholar
  176. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, Pang X, Theoharides TC (1999) Morphological and functional demonstration of rat dura mast cell-neuron interactions in vitro and in vivo. Brain Res 849:1–15PubMedCrossRefGoogle Scholar
  177. rrode-Bruses G, Bruses JL (2012) Maternal immune activation by poly I:C induces expression of cytokines IL-1beta and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation. 9:83Google Scholar
  178. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436PubMedCrossRefGoogle Scholar
  179. Ruhela RK, Prakash A, Medhi B (2015) An urgent need for experimental animal model of autism in drug development. Ann Neurosci 22:44–49PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sanders DS, Aziz I (2012) Non-celiac wheat sensitivity: separating the wheat from the chat! Am J Gastroenterol 107:1908–1912PubMedCrossRefGoogle Scholar
  181. Sandig H, Bulfone-Paus S (2012) TLR signaling in mast cells: common and unique features. Front Immunol 3:185PubMedPubMedCentralCrossRefGoogle Scholar
  182. Sandin S, Schendel D, Magnusson P, Hultman C, Suren P, Susser E, Gronborg T, Gissler M, Gunnes N, Gross R, Henning M, Bresnahan M, Sourander A, Hornig M, Carter K, Francis R, Parner E, Leonard H, Rosanoff M, Stoltenberg C, Reichenberg A (2015) Autism risk associated with parental age and with increasing difference in age between the parents., Mol. PsychiatryGoogle Scholar
  183. Scattoni ML, Martire A, Cartocci G, Ferrante A, Ricceri L (2013) Reduced social interaction, behavioural flexibility and BDNF signalling in the BTBR T+ tf/J strain, a mouse model of autism. Behav Brain Res 251:35–40PubMedCrossRefGoogle Scholar
  184. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705PubMedPubMedCentralCrossRefGoogle Scholar
  185. Schmidt BM, Ribnicky DM, Lipsky PE, Raskin I (2007) Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 3:360–366PubMedCrossRefGoogle Scholar
  186. Schoch C (2003) In vitro inhibition of human conjunctival mast-cell degranulation by ketotifen. J Ocul Pharmacol Ther 19:75–81PubMedCrossRefGoogle Scholar
  187. Schubart JR, Camacho F, Leslie D (2014) Psychotropic medication trends among children and adolescents with autism spectrum disorder in the Medicaid program. Autism 18:631–637PubMedCrossRefGoogle Scholar
  188. Seelinger G, Merfort I, Schempp CM (2008) Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 74:1667–1677PubMedCrossRefGoogle Scholar
  189. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, Donald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. PNAS 110:3507–3512PubMedPubMedCentralCrossRefGoogle Scholar
  190. Shan L, Bao AM, Swaab DF (2015) The human histaminergic system in neuropsychiatric disorders. Trends Neurosci 38:167–177PubMedCrossRefGoogle Scholar
  191. Sharma V, Mishra M, Ghosh S, Tewari R, Basu A, Seth P, Sen E (2007) Modulation of interleukin-1beta mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull 73:55–63PubMedCrossRefGoogle Scholar
  192. Sheikh IA, Ali R, Dar TA, Kamal MA (2012) An overview on potential neuroprotective compounds for management of Alzheimer’s disease. CNS Neurol Disord Drug Targets 11:1006–1011PubMedCrossRefGoogle Scholar
  193. Shim SY, Park JR, Byun DS (2012) 6-Methoxyluteolin from Chrysanthemum zawadskii var. latilobum suppresses histamine release and calcium influx via down-regulation of FcepsilonRI alpha chain expression. J Microbiol Biotechnol 22:622–627PubMedCrossRefGoogle Scholar
  194. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW (2014) Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A 111:15550–15555PubMedPubMedCentralCrossRefGoogle Scholar
  195. Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26:3103–3117PubMedCrossRefGoogle Scholar
  196. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sochocky N, Milin R (2013) Second generation antipsychotics in Asperger’s Disorder and high functioning autism: a systematic review of the literature and effectiveness of meta-analysis. Curr Clin Pharmacol 8:370–379PubMedCrossRefGoogle Scholar
  198. Solanki I, Parihar P, Mansuri ML, Parihar MS (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6:64–72PubMedPubMedCentralCrossRefGoogle Scholar
  199. Spencer D, Marshall J, Post B, Kulakodlu M, Newschaffer C, Dennen T, Azocar F, Jain A (2013) Psychotropic medication use and polypharmacy in children with autism spectrum disorders. Pediatrics 132:833–840PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sternthal MJ, Enlow MB, Cohen S, Canner MJ, Staudenmayer J, Tsang K, Wright RJ (2009) Maternal interpersonal trauma and cord blood IgE levels in an inner-city cohort: a life-course perspective. J Allergy Clin Immunol 124:954–960PubMedPubMedCentralCrossRefGoogle Scholar
  201. Takano T (2015) Role of microglia in Autism: recent advances. Dev Neurosci 37:195–202PubMedCrossRefGoogle Scholar
  202. Taliou A, Zintzaras E, Lykouras L, Francis K (2013) An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clin Ther 35:592–602PubMedCrossRefGoogle Scholar
  203. Theoharides TC (2009) Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol 22:859–865PubMedGoogle Scholar
  204. Theoharides TC (2013) Is a subtype of autism “allergy of the brain”? Clin Ther 35:584–591PubMedCrossRefGoogle Scholar
  205. Theoharides TC, Asadi S (2012) Unwanted interactions among psychotropic drugs and other treatments for Autism Spectrum Disorders. J Clin Psychopharmacol 32:437–440PubMedCrossRefGoogle Scholar
  206. Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146:1–12PubMedCrossRefGoogle Scholar
  207. Theoharides TC, Doyle R (2008) Autism, gut-blood-brain barrier and mast cells. J Clin Psychopharm 28:479–483CrossRefGoogle Scholar
  208. Theoharides TC, Konstantinidou A (2007) Corticotropin-releasing hormone and the blood-brain-barrier. Front Biosci 12:1615–1628PubMedCrossRefGoogle Scholar
  209. Theoharides TC, Zhang B (2011) Neuro-Inflammation, blood-brain barrier, seizures and autism. J Neuroinflammation 8:168PubMedPubMedCentralCrossRefGoogle Scholar
  210. Theoharides TC, Spanos CP, Pang X, Alferes L, Ligris K, Letourneau R, Rozniecki JJ, Webster E, Chrousos G (1995) Stress-induced intracranial mast cell degranulation. A corticotropin releasing hormone-mediated effect. Endocrinology 136:5745–5750PubMedGoogle Scholar
  211. Theoharides TC, Weinkauf C, Conti P (2004) Brain cytokines and neuropsychiatric disorders. J Clin Psychopharmacol 24:577–581PubMedCrossRefGoogle Scholar
  212. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49:65–76PubMedCrossRefGoogle Scholar
  213. Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78PubMedCrossRefGoogle Scholar
  214. Theoharides TC, Doyle R, Francis K, Conti P, Kalogeromitros D (2008) Novel therapeutic targets for autism. Trends Pharmacol Sci 29:375–382PubMedCrossRefGoogle Scholar
  215. Theoharides TC, Kempuraj D, Redwood L (2009) Autism: an emerging ‘neuroimmune disorder’ in search of therapy. Exp Opin Pharmacotherapy 10:2127–2143CrossRefGoogle Scholar
  216. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2010a) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33PubMedPubMedCentralCrossRefGoogle Scholar
  217. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2010b) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33PubMedPubMedCentralCrossRefGoogle Scholar
  218. Theoharides TC, Zhang B, Kempuraj D, Tagen M, Vasiadi M, Angelidou A, Alysandratos KD, Kalogeromitros D, Asadi S, Stavrianeas N, Peterson E, Leeman S, Conti P (2010c) IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci U S A 107:4448–4453PubMedPubMedCentralCrossRefGoogle Scholar
  219. Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D (2012a) Mast cell activation and autism. Biochim Biophys Acta 1822:34–41PubMedCrossRefGoogle Scholar
  220. Theoharides TC, Asadi S, Panagiotidou S (2012b) A case series of a luteolin formulation (NeuroProtek(R)) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 25:317–323PubMedGoogle Scholar
  221. Theoharides TC, Asadi S, Panagiotidou S, Weng Z (2013a) The “missing link” in autoimmunity and autism: Extracellular mitochondrial components secreted from activated live mast cells. Autoimmun Rev 12:1136–1142PubMedCrossRefGoogle Scholar
  222. Theoharides TC, Asadi S, Patel AB (2013b) Focal brain inflammation and autism. J Neuroinflammation 10:46PubMedPubMedCentralCrossRefGoogle Scholar
  223. Theoharides TC, Conti P, Economu M (2014) Brain inflammation, neuropsychiatric disorders, and immunoendocrine effects of luteolin. J Clin Psychopharmacol 34:187–189PubMedCrossRefGoogle Scholar
  224. Theoharides TC, Stewart JM, Hatziagelaki E, Kolaitis G (2015a) Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front Neurosci 9:225PubMedPubMedCentralCrossRefGoogle Scholar
  225. Theoharides TC, Stewart JM, Panagiotidou S, Melamed I (2015b) Mast cells, brain inflammation and autism., Eur J PharmacolGoogle Scholar
  226. Theoharides TC, Valent P, Akin C (2015c) Mast cells, mastocytosis, and related disorders. N Engl J Med 373:163–172PubMedCrossRefGoogle Scholar
  227. Theoharides TC, Valent P, Akin C (2015d) Mast cells, mastocytosis, and related disorders. N Engl J Med 373:163–172PubMedCrossRefGoogle Scholar
  228. Theoharides T, Athanassiou M, Panagiotidou S, Doyle R (2015e) Dysregulated brain immunity and neurotrophin signaling in Rett syndrome and autism spectrum disorders. J Neuroimmunol 279:33–38PubMedCrossRefGoogle Scholar
  229. Thilakarathna SH, Rupasinghe HP (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5:3367–3387PubMedPubMedCentralCrossRefGoogle Scholar
  230. Tomljenovic L, Shaw CA (2011) Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 105:1489–1499PubMedCrossRefGoogle Scholar
  231. Tonhajzerova I, Ondrejka I, Mestanik M, Mikolka P, Hrtanek I, Mestanikova A, Bujnakova I, Mokra D (2015) Inflammatory activity in autism spectrum disorder., Adv Exp Med BiolCrossRefGoogle Scholar
  232. Trivedi MS, Deth RC (2012) Role of a redox-based methylation switch in mRNA life cycle (pre- and post-transcriptional maturation) and protein turnover: implications in neurological disorders. Front Neurosci 6:92PubMedPubMedCentralCrossRefGoogle Scholar
  233. Tsai FS, Peng WH, Wang WH, Wu CR, Hsieh CC, Lin YT, Feng IC, Hsieh MT (2007) Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. Life Sci 80:1692–1698PubMedCrossRefGoogle Scholar
  234. Tsai JD, Chang SN, Mou CH, Sung FC, Lue KH (2013) Association between atopic diseases and attention-deficit/hyperactivity disorder in childhood: a population-based case-control study. Ann Epidemiol 23:185–188PubMedCrossRefGoogle Scholar
  235. Tsilioni I, Dodman N, Petra AI, Taliou A, Francis K, Moon-Fanelli AA, Shuster L, Theoharides TC (2014a) Elevated serum neurotensin and CRH levels in children with autistic spectrum disorders and tail-chasing bull terriers with a phenotype similar to autism. Transl Psychiatry 4, e466PubMedCrossRefGoogle Scholar
  236. Tsilioni I, Panagiotidou S, Theoharides TC (2014b) Exosomes in neurologic and psychiatric disorders. Clin Ther 36:882–888PubMedCrossRefGoogle Scholar
  237. Tsilioni I, Taliou A, Francis K, Theoharides TC (2015) Children with autism spectrum disorders, who improved with a luteolin containing dietary formulation, show reduced serum levels of TNF and IL-6. Transl Psychiatry 5, e647PubMedCrossRefGoogle Scholar
  238. Valicenti-McDermott M, Burrows B, Bernstein L, Hottinger K, Lawson K, Seijo R, Schechtman M, Shulman L, Shinnar S (2014) Use of complementary and alternative medicine in children with autism and other developmental disabilities: associations with ethnicity, child comorbid symptoms, and parental stress. J Child Neurol 29:360–367PubMedCrossRefGoogle Scholar
  239. van Steensel FJ, Bogels SM, Perrin S (2011) Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev 14:302–317PubMedPubMedCentralCrossRefGoogle Scholar
  240. Vanuytsel T, van WS, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim RS, Toth J, Holvoet L, Farre R, Van OL, Boeckxstaens G, Verbeke K, Tack J (2014) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63:1293–1299Google Scholar
  241. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  242. Vasa RA, Mazurek MO (2015) An update on anxiety in youth with autism spectrum disorders. Curr Opin Psychiatry 28:83–90PubMedGoogle Scholar
  243. Vasiadi M, Kalogeromitros D, Kempuraj D, Clemons A, Zhang B, Chliva C, Makris M, Wolfberg A, House M, Theoharides TC (2010) Rupatadine inhibits proinflammatory mediator secretion from human mast cells triggered by different stimuli. Int. Arch. Allergy Immunol 151:38–45CrossRefGoogle Scholar
  244. Vauzour D (2014) Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J Sci Food Agric 94:1042–1056PubMedCrossRefGoogle Scholar
  245. Verbeek R, Plomp AC, van Tol EA, van Noort JM (2004) The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol 68:621–629PubMedCrossRefGoogle Scholar
  246. Volkmar FR (2009) Citalopram treatment in children with autism spectrum disorders and high levels of repetitive behavior. Arch Gen Psychiatry 66:581–582PubMedCrossRefGoogle Scholar
  247. Walle T (2007) Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol Pharm 4:826–832PubMedCrossRefGoogle Scholar
  248. Wang W, Ji P, Riopelle RJ, Dow KE (2002) Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J Neurochem 80:287–294PubMedCrossRefGoogle Scholar
  249. Wang DM, Li SQ, Wu WL, Zhu XY, Wang Y, Yuan HY (2014) Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res 39:1533–1543PubMedCrossRefGoogle Scholar
  250. Wei G, Hwang L, Tsai C (2014) Absolute bioavailability, pharmacokinetics and excretion of 5,7,3',4' -tetramethoxyflavone in rats. J Functional Foods 7:136–141CrossRefGoogle Scholar
  251. Weisman O, Agerbo E, Carter CS, Harris JC, Uldbjerg N, Henriksen TB, Thygesen M, Mortensen PB, Leckman JF, Dalsgaard S (2015) Oxytocin-augmented labor and risk for autism in males. Behav Brain Res 284:207–212PubMedCrossRefGoogle Scholar
  252. Weng Z, Patel A, Panagiotidou S, Theoharidess TC (2014) The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J Allergy Clin Immunol 14:1044–1052Google Scholar
  253. Williams K, Wheeler DM, Silove N, Hazell P (2010) Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Cochrane Database Syst Rev 8, CD004677Google Scholar
  254. Williams K, Wray JA, Wheeler DM (2012) Intravenous secretin for autism spectrum disorders (ASD). Cochrane Database Syst Rev 4, CD003495Google Scholar
  255. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de WJ (2009) Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 23:64–74PubMedCrossRefGoogle Scholar
  256. Wong PH, White KM (2015) Impact of immunoglobulin therapy in pediatric disease: a review of immune mechanisms. Clin Rev Allergy ImmunolGoogle Scholar
  257. Wong AY, Hsia Y, Chan EW, Murphy DG, Simonoff E, Buitelaar JK, Wong IC (2014) The Variation of Psychopharmacological Prescription Rates for People With Autism Spectrum Disorder (ASD) in 30 Countries. Autism Res 7:543–554PubMedCrossRefGoogle Scholar
  258. Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, Tsim KW (2013) Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013:127075PubMedPubMedCentralGoogle Scholar
  259. Yaghmaie P, Koudelka CW, Simpson EL (2013) Mental health comorbidity in patients with atopic dermatitis. J Allergy Clin Immunol 131:428–433PubMedCrossRefGoogle Scholar
  260. Yoo H (2015) Genetics of autism spectrum disorder: current status and possible clinical applications. Exp Neurobiol 24:257–272PubMedPubMedCentralCrossRefGoogle Scholar
  261. Yoo DY, Choi JH, Kim W, Nam SM, Jung HY, Kim JH, Won MH, Yoon YS, Hwang IK (2013) Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model. Neurol Res 35:813–820PubMedCrossRefGoogle Scholar
  262. Young NJ, Findling RL (2015) An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Curr Opin Psychiatry 28:91–101Google Scholar
  263. Yui K, Koshiba M, Nakamura S, Kobayashi Y (2012) Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial. J Clin Psychopharmacol 32:200–206PubMedCrossRefGoogle Scholar
  264. Zaidan H, Leshem M, Gaisler-Salomon I (2013) Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring. Biol Psychiatry 74:680–687PubMedCrossRefGoogle Scholar
  265. Zerbo O, Yoshida C, Grether JK, Van de WJ, Ashwood P, Delorenze GN, Hansen RL, Kharrazi M, Croen LA (2014) Neonatal cytokines and Chemokines and risk of autism spectrum disorder: the early markers for autism (EMA) study: a case-control study. J Neuroinflammation 11:113PubMedPubMedCentralCrossRefGoogle Scholar
  266. Zerbo O, Leong A, Barcellos L, Bernal P, Fireman B, Croen LA (2015) Immune mediated conditions in autism spectrum disorders. Brain Behav Immun 46:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  267. Zhang B, Angelidou A, Alysandratos KD, Vasiadi M, Francis K, Asadi S, Theoharides A, Sideri K, Lykouras L, Kalogeromitros D, Theoharides TC (2010) Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J Neuroinflammation 7:80Google Scholar
  268. Zhang B, Alysandratos KD, Angelidou A, Asadi S, Sismanopoulos N, Delivanis DA, Weng Z, Miniati A, Vasiadi M, Katsarou-Katsari A, Miao B, Leeman SE, Kalogeromitros D, Theoharides TC (2011) Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: Relevance to atopic dermatitis. J Allergy Clin Immunol 127:1522–1531PubMedPubMedCentralCrossRefGoogle Scholar
  269. Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC (2012a) Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PloS One 7, e49767PubMedPubMedCentralCrossRefGoogle Scholar
  270. Zhang B, Weng Z, Sismanopoulos N, Asadi S, Therianou A, Alysandratos KD, Angelidou A, Shirihai O, Theoharides TC (2012b) Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int Arch. Allergy Immunol 159:23–32CrossRefGoogle Scholar
  271. Zhang S, Zeng X, Yang H, Hu G, He S (2012c) Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 29:931–940PubMedCrossRefGoogle Scholar
  272. Zhu LH, Bi W, Qi RB, Wang HD, Lu DX (2011) Luteolin inhibits microglial inflammation and improves neuron survival against inflammation. Int J Neurosci 121:329–336PubMedCrossRefGoogle Scholar
  273. Zhu J, Qu C, Lu X, Zhang S (2014) Activation of microglia by histamine and substance P. Cell Physiol Biochem 34:768–780PubMedCrossRefGoogle Scholar
  274. Ziats MN, Rennert OM (2011) Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. PLoS One 6, e24691PubMedPubMedCentralCrossRefGoogle Scholar
  275. Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and PathobiologyTufts University School of MedicineBostonUSA
  2. 2.Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonUSA
  3. 3.Department of PsychiatryTufts University School of Medicine and Tufts Medical CenterBostonUSA

Personalised recommendations