Advertisement

Huntington’s Disease

  • Adam Labadorf
  • Andrew G. Hoss
  • Richard H. MyersEmail author
Chapter

Abstract

Multiple lines of evidence have implicated neuroinflammation as both a cause and an effect of neurodegeneration in Huntington’s disease (HD). Studies of post mortem human HD brains and HD mouse models have demonstrated that the huntingtin protein (mHTT) has neurotoxic effects due to cell-autonomous defects in neurons and through cell-cell interactions with dysfunctional astrocytes and microglia in the brain. Neurodegeneration has been linked to excitotoxicity caused by ion and neurotransmitter concentrations in the brain, supported by evidence that extracellular levels of these molecules are modulated by astrocyte-specific mechanisms which are impaired in HD. mHTT causes monocytes and microglia to be hyper-reactive in HD patients and mouse models, contributing to neurodegeneration. Key pro-inflammatory players NFkB, IL-6, and TNF-α are implicated with disease progression, and several lines of evidence suggest that these molecules are associated with more severe neurodegeneration. Dysregulation of the NFkB activation pathway in particular is seen in HD neurons, astrocytes, microglia, and monocytes and thus may be a major component of the cellular response to mHTT with therapeutic potential. Collectively, the immune response and neuroinflammation are seen as key aspects of pathogenesis in HD, and multiple lines of evidence suggest that the neuroimmune response is both a cause and effect of neurodegeneration.

Keywords

Huntingtin protein Huntington’s disease Neurodegenerative disease Neuroinflammation 

References

  1. Anne SL, Saudou F, Humbert S (2007) Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J Neurosci 27:7318–7328. doi: 10.1523/JNEUROSCI.1831-07.2007 CrossRefPubMedGoogle Scholar
  2. Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 5:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aylward EH (2014) Magnetic resonance imaging striatal volumes: a biomarker for clinical trials in Huntington’s disease. Mov Disord 29:1429–1433. doi: 10.1002/mds.26013 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bessert DA, Gutridge KL, Dunbar JC, Carlock LR (1995) The identification of a functional nuclear localization signal in the Huntington disease protein. Brain Res Mol Brain Res 33:165–173CrossRefPubMedGoogle Scholar
  5. Bhakar AL, Tannis L-L, Zeindler C, Russo MP, Jobin C, Park DS, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kB activity is required for central neuron survival. J Neurosci 22:8466–8475PubMedGoogle Scholar
  6. Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Möller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877. doi: 10.1084/jem.20080178 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249. doi: 10.1046/j.1471-4159.2001.00689.x CrossRefPubMedGoogle Scholar
  8. Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S, Moussaoui S, Tabrizi SJ, Stella N, Muchowski PJ (2012) Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J Neurosci 32:18259–18268. doi: 10.1523/JNEUROSCI.4008-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bradford J, Shin J-Y, Roberts M, Wang C-E, Li X-J, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci 106:22480–22485. doi: 10.1073/pnas.0911503106 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653. doi: 10.1002/ana.410410514 CrossRefPubMedGoogle Scholar
  11. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24(3):182–188CrossRefPubMedGoogle Scholar
  12. Caviston JP, Zajac AL, Tokito M, Holzbaur EL (2011) Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes. Mol Biol Cell 22(4):478–492. doi: 10.1091/mbc.E10-03-0233 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23(9):387–392CrossRefPubMedGoogle Scholar
  14. Chen L-I, Wu J-C, Wang L-H, Wang J, Z-H Q, Difiglia M, Lin F (2012) Rapamycin prevents the mutant huntingtin-suppressed GLT-1 expression in cultured astrocytes. Acta Pharmacol Sin 33:385–392. doi: 10.1038/aps.2011.162 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, Saudou F, Humbert S (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27(15):2124–2134. doi: 10.1038/emboj.2008.133 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Consortium HDi (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278. doi: 10.1016/j.stem.2012.04.027 CrossRefGoogle Scholar
  17. Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C, Cattaneo E, Gage FH, Cleveland DW, Glass CK (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513–521. doi: 10.1038/nn.3668 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cudkowicz M, Kowall NW (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol 27:200–204. doi: 10.1002/ana.410270217 CrossRefPubMedGoogle Scholar
  19. Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90. doi: 10.1002/glia.22350 CrossRefPubMedGoogle Scholar
  20. Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Björkqvist M, Petersén A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP, Leavitt BR, Keir G, Ward M, Tabrizi SJ (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840. doi: 10.1021/pr0700753 CrossRefPubMedGoogle Scholar
  21. de la Monte SM, Vonsattel JP, Richardson EP (1988) Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington’s disease. J Neuropathol Exp Neurol 47:516–525CrossRefPubMedGoogle Scholar
  22. Di Prospero NA, Tagle DA (2000) Normal and mutant huntingtin: partners in crime. Nat Med 6(11):1208–1209. doi: 10.1038/81294 CrossRefPubMedGoogle Scholar
  23. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993CrossRefPubMedGoogle Scholar
  24. Djoussé L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJA, McCusker E, Gómez-Tortosa E, Mayo D, Jones R, Zanko A, Nance M, Abramson R, Suchowersky O, Paulsen J, Harrison M, Yang Q, Cupples LA, Gusella JF, MacDonald ME, Myers RH (2003) Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 119A:279–282. doi: 10.1002/ajmg.a.20190 CrossRefPubMedGoogle Scholar
  25. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392. doi: 10.1038/ng0893-387 CrossRefPubMedGoogle Scholar
  26. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19:3053–3067. doi: 10.1093/hmg/ddq212 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Franciosi S, Ryu JK, Shim Y, Hill A, Connolly C, Hayden MR, McLarnon JG, Leavitt BR (2012) Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol Dis 45:438–449. doi: 10.1016/j.nbd.2011.09.003 CrossRefPubMedGoogle Scholar
  28. Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israël A, Mémet S (2003) Forebrain-specific neuronal inhibition of nuclear factor-kB activity leads to loss of neuroprotection. J Neurosci 23:9403–9408PubMedGoogle Scholar
  29. Godavarthi SK, Narender D, Mishra A, Goswami A, Rao SNR, Nukina N, Jana NR (2009) Induction of chemokines, MCP-1, and KC in the mutant huntingtin expressing neuronal cells because of proteasomal dysfunction. J Neurochem 108:787–795. doi: 10.1111/j.1471-4159.2008.05823.x CrossRefPubMedGoogle Scholar
  30. Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA, Srinidhi J, Gusella JF, Bird ED, Vonsattel JP, Myers RH (2001) Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann Neurol 49(1):29–34CrossRefPubMedGoogle Scholar
  31. Group THsDCR (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  32. Gu X, André VM, Cepeda C, Li S-H, Li X-J, Levine MS, Yang XW (2007) Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2:8. doi: 10.1186/1750-1326-2-8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238CrossRefPubMedGoogle Scholar
  34. Gutekunst C-A, Li S-H, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li X-J (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534PubMedGoogle Scholar
  35. Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T, Mysore JS, Gusella JF, MacDonald ME, Myers RH, Vonsattel J-P (2012) Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79:1708–1715. doi: 10.1212/WNL.0b013e31826e9a5d CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Wheeler V, MacDonald ME, Gusella JF, Myers RH (2009) Estimating the probability of de novo HD cases from transmissions of expanded penetrant CAG alleles in the Huntington disease gene from male carriers of high normal alleles (27–35 CAG). Am J Med Genet A 149A:1375–1381. doi: 10.1002/ajmg.a.32901 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV (2013) Microglia activation as a biomarker for traumatic brain injury. Front Neurol 4:30. doi: 10.3389/fneur.2013.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hsiao H-Y, Chen Y-C, Chen H-M, Tu P-H, Chern Y (2013) A critical role of astrocyte-mediated nuclear factor-kB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22:1826–1842. doi: 10.1093/hmg/ddt036 CrossRefPubMedGoogle Scholar
  39. Huntington G (1872) On chorea. Med Surg Rep 26:317–321Google Scholar
  40. Kaltschmidt C, Kaltschmidt B, Baeuerle PA (1993) Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech Dev 43:135–147CrossRefPubMedGoogle Scholar
  41. Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA (1994) Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14:3981–3992CrossRefPubMedPubMedCentralGoogle Scholar
  42. Khoshnan A, Patterson PH (2011) The role of IkB kinase complex in the neurobiology of Huntington’s disease. Neurobiol Dis 43:305–311. doi: 10.1016/j.nbd.2011.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkB kinase complex and nuclear factor-kB contributes to mutant Huntingtin neurotoxicity. J Neurosci 24:7999–8008. doi: 10.1523/JNEUROSCI.2675-04.2004 CrossRefPubMedGoogle Scholar
  44. Khoshnan A, Ko J, Tescu S, Brundin P, Patterson PH (2009) IKKα and IKKβ regulation of DNA damage-induced cleavage of Huntingtin. PLoS One 4, e5768. doi: 10.1371/journal.pone.0005768 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 98:12784–12789. doi: 10.1073/pnas.221451398 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 41(2):160–165. doi: 10.1002/ana.410410206 CrossRefPubMedGoogle Scholar
  47. Kraft AD, Kaltenbach LS, Lo DC, Harry GJ (2012) Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 33:621.e617–621.e633. doi: 10.1016/j.neurobiolaging.2011.02.015 CrossRefGoogle Scholar
  48. Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S, Masliah E, Möller T, Ransohoff R, Tabrizi SJ, Björkqvist M, Muchowski PJ (2012a) Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci 32:133–142. doi: 10.1523/JNEUROSCI.4846-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kwan W, Träger U, Davalos D, Chou A, Bouchard J, Andre R, Miller A, Weiss A, Giorgini F, Cheah C, Möller T, Stella N, Akassoglou K, Tabrizi SJ, Muchowski PJ (2012b) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122:4737–4747. doi: 10.1172/JCI64484 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Larkin PB, Muchowski PJ (2012) Genetic deficiency of complement component 3 does not alter disease progression in a mouse model of Huntington’s disease. J Huntingtons Dis 1:107–118. doi: 10.3233/JHD-2012-120021 PubMedPubMedCentralGoogle Scholar
  51. Leblhuber F, Walli J, Jellinger K, Tilz GP, Widner B, Laccone F, Fuchs D (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750. doi: 10.1515/CCLM.1998.132 CrossRefPubMedGoogle Scholar
  52. Li SH, Li XJ (2004) Huntingtin and its role in neuronal degeneration. Neuroscientist 10(5):467–475. doi: 10.1177/1073858404266777 CrossRefPubMedGoogle Scholar
  53. Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci 18(4):1261–1269PubMedGoogle Scholar
  54. Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ (2002) Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 22(5):1277–1287CrossRefPubMedPubMedCentralGoogle Scholar
  55. Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH (2005) Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Neurobiol Dis 20(2):562–573. doi: 10.1016/j.nbd.2005.04.011 CrossRefPubMedGoogle Scholar
  56. Ma B, Culver BP, Baj G, Tongiorgi E, Chao MV, Tanese N (2010) Localization of BDNF mRNA with the Huntington’s disease protein in rat brain. Mol Neurodegener 5:22. doi: 10.1186/1750-1326-5-22 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Marcora E, Kennedy MB (2010) The Huntington’s disease mutation impairs Huntingtin’s role in the transport of NF-?B from the synapse to the nucleus. Hum Mol Genet 19:4373–4384. doi: 10.1093/hmg/ddq358 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-kB functions in synaptic signaling and behavior. Nat Neurosci 6:1072–1078. doi: 10.1038/nn1110 CrossRefPubMedGoogle Scholar
  59. Merritt AD, Conneally PM, Rahman NF, Drew AL (1969) Juvenile Huntington’s chorea, In “Progress in Neurogenetics” (Barbeau A., Brunette T.R., Eds.), pp. 645–650. Amsterdam: Excerpta Medica Foundation.Google Scholar
  60. Myers RH (2004) Huntington’s disease genetics. NeuroRx 1:255–262CrossRefPubMedPubMedCentralGoogle Scholar
  61. Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP, Bird ED (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol 50:729–742CrossRefPubMedGoogle Scholar
  62. Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81(5):811–823CrossRefPubMedGoogle Scholar
  63. Paulsen JS (2011) Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 11:474–483. doi: 10.1007/s11910-011-0215-x CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643. doi: 10.1212/01.wnl.0000222734.56412.17 CrossRefPubMedGoogle Scholar
  65. Polidori MC, Mecocci P, Browne SE, Senin U, Beal MF (1999) Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci Lett 272:53–56CrossRefPubMedGoogle Scholar
  66. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker RA, Piccini P (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270. doi: 10.1002/hbm.21008 CrossRefPubMedGoogle Scholar
  67. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312. doi: 10.1038/nrn3722 CrossRefPubMedGoogle Scholar
  68. Ranen NG, Stine OC, Abbott MH, Sherr M, Codori A-M, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C, Kasch LM, Ghaffari M, Chase GA, Kazazian HH, Brandt J, Folstein SE, Ross CA (1995) Anticipation and instability of IT-15 (CAG)N repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602PubMedPubMedCentralGoogle Scholar
  69. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi: 10.1038/ng1362 CrossRefPubMedGoogle Scholar
  70. Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747. doi: 10.1212/01.wnl.0000174432.87383.87 CrossRefPubMedGoogle Scholar
  71. Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA (2001) Familial influence on age of onset among siblings with Huntington disease. Am J Med Genet 105:399–403CrossRefPubMedGoogle Scholar
  72. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol 60:161–172CrossRefGoogle Scholar
  73. Savas JN, Ma B, Deinhardt K, Culver BP, Restituito S, Wu L, Belasco JG, Chao MV, Tanese N (2010) A role for huntington disease protein in dendritic RNA granules. J Biol Chem 285(17):13142–13153. doi: 10.1074/jbc.M110.114561 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90(3):549–558CrossRefPubMedGoogle Scholar
  75. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A 96(8):4604–4609CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sharp AH, Loev SJ, Schilling G, Li S-H, Li X-J, Bao J, Wagster MV, Kotzuk JA, Steiner JP, Lo A, Hedreen J, Sisodia S, Snyder SH, Dawson TM, Ryugo DK, Ross CA (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14:1065–1074. doi: 10.1016/0896-6273(95)90345-3 CrossRefPubMedGoogle Scholar
  77. Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012. doi: 10.1083/jcb.200508072 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singhrao SK, Neal JW, Morgan BP, Gasque P (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 159:362–376. doi: 10.1006/exnr.1999.7170 CrossRefPubMedGoogle Scholar
  79. Silvestroni A, Faull RL, Strand AD, Möller T (2009) Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 20:1098–103. doi: 10.1097/WNR.0b013e32832e34ee
  80. Sotrel A, Paskevich PA, Kiely DK, Bird ED, Williams RS, Myers RH (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease. Neurology 41:1117. doi: 10.1212/WNL.41.7.1117 CrossRefPubMedGoogle Scholar
  81. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97(12):6763–6768. doi: 10.1073/pnas.100110097 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766. doi: 10.1093/brain/awm044 CrossRefPubMedGoogle Scholar
  83. Thompson LM, Aiken CT, Kaltenbach LS, Agrawal N, Illes K, Khoshnan A, Martinez-Vincente M, Arrasate M, O’Rourke JG, Khashwji H, Lukacsovich T, Zhu Y-Z, Lau AL, Massey A, Hayden MR, Zeitlin SO, Finkbeiner S, Green KN, LaFerla FM, Bates G, Huang L, Patterson PH, Lo DC, Cuervo AM, Marsh JL, Steffan JS (2009) IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol 187:1083–1099. doi: 10.1083/jcb.200909067 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Tong Y, Ha TJ, Liu L, Nishimoto A, Reiner A, Goldowitz D (2011) Spatial and temporal requirements for huntingtin (Htt) in neuronal migration and survival during brain development. J Neurosci 31(41):14794–14799. doi: 10.1523/JNEUROSCI.2774-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17:694–703. doi: 10.1038/nn.3691 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Träger U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, McKinnon C, Sirinathsinghji E, Kahlon S, Pfister EL, Moser R, Hummerich H, Antoniou M, Bates GP, Luthi-Carter R, Lowdell MW, Björkqvist M, Ostroff GR, Aronin N, Tabrizi SJ (2014a) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkB pathway dysregulation. Brain 137:819–833. doi: 10.1093/brain/awt355 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Träger U, Andre R, Magnusson-Lind A, Miller JRC, Connolly C, Weiss A, Grueninger S, Silajdžić E, Smith DL, Leavitt BR, Bates GP, Björkqvist M, Tabrizi SJ (2014b) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73C:388–398. doi: 10.1016/j.nbd.2014.10.012 Google Scholar
  88. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 10:104–110. doi: 10.1038/ng0595-104 CrossRefPubMedGoogle Scholar
  89. Usdin MT, Shelbourne PF, Myers RM, Madison DV (1999) Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet 8(5):839–846CrossRefPubMedGoogle Scholar
  90. van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19:441–448. doi: 10.1176/appi.neuropsych.19.4.441 CrossRefPubMedGoogle Scholar
  91. van Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG (2002) Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res 109(1–2):1–10CrossRefPubMedGoogle Scholar
  92. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMedGoogle Scholar
  93. Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ (2008) Impaired ubiquitin-proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180(6):1177–1189. doi: 10.1083/jcb.200709080 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Weiss A, Träger U, Wild EJ, Grueninger S, Farmer R, Landles C, Scahill RI, Lahiri N, Haider S, Macdonald D, Frost C, Bates GP, Bilbe G, Kuhn R, Andre R, Tabrizi SJ (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest 122:3731–3736. doi: 10.1172/JCI64565 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wellington CL, Ellerby LM, Hackam AS, Margolis RL, Trifiro MA, Singaraja R, McCutcheon K, Salvesen GS, Propp SS, Bromm M, Rowland KJ, Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross CA, Nicholson DW, Bredesen DE, Hayden MR (1998) Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem 273(15):9158–9167CrossRefPubMedGoogle Scholar
  96. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR (2002) Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J Neurosci 22(18):7862–7872PubMedGoogle Scholar
  97. Wellmann H, Kaltschmidt B, Kaltschmidt C (2001) Retrograde transport of transcription factor NF-kB in living neurons. J Biol Chem 276:11821–11829. doi: 10.1074/jbc.M009253200 CrossRefPubMedGoogle Scholar
  98. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35(1):76–83. doi: 10.1038/ng1219 CrossRefPubMedGoogle Scholar
  99. Zühlke C, Riess O, Bockel B, Lange H, Thies U (1993) Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Mol Genet 2:2063–2067CrossRefPubMedGoogle Scholar
  100. Zwilling D, Huang S-Y, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu H-Q, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874. doi: 10.1016/j.cell.2011.05.020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Adam Labadorf
    • 1
    • 2
  • Andrew G. Hoss
    • 2
    • 3
  • Richard H. Myers
    • 1
    • 4
    • 5
    • 6
    Email author
  1. 1.Bioinformatics ProgramBoston UniversityBostonUSA
  2. 2.Department of NeurologyBoston University School of MedicineBostonUSA
  3. 3.Graduate Program in Genetics and GenomicsBoston University School of MedicineBostonUSA
  4. 4.Department of NeurologyBoston University School of MedicineBostonUSA
  5. 5.Graduate Program in Genetics and GenomicsBoston University School of MedicineBostonUSA
  6. 6.Genome Science InstituteBoston University School of MedicineBostonUSA

Personalised recommendations