NEO 2015 pp 67-88 | Cite as

Local Search Approach to Genetic Programming for RF-PAs Modeling Implemented in FPGA

  • J. R. Cárdenas Valdez
  • Emigdio Z-Flores
  • José Cruz Núñez Pérez
  • Leonardo Trujillo
Part of the Studies in Computational Intelligence book series (SCI, volume 663)


This paper presents a genetic programming (GP) approach enhanced with a local search heuristic (GP-LS) to emulate the Doherty 7 W @ 2.11 GHz Radio Frequency (RF) Power Amplifier (PA) conversion curves. GP has been shown to be a powerful modeling tool, but can be compromised by slow convergence and computational cost. The proposal is to combine the explorative search of standard GP, which build the syntax of the solution, with numerical methods that perform an exploitative and greedy local optimization of the evolved structures. The results are compared with traditional modeling techniques, particularly the memory polynomial model (MPM). The main contribution of the paper is the design, comparison and hardware emulation of GP-LS for FPGA real applications. The experimental results show that GP-LS can outperform standard MPM, and suggest a promising new direction of future work on digital pre-distortion (DPD) that requires complex behavioral models.


Behavioral models DPD FPGA Genetic programming Local search MPM 



The authors wish to thank the Dr. José Raúl Loo Yau of the CINVESTAV for the support provided during the RF-PA Doherty 7 W @ 2.11 GHz measurement. In addition, the authors would like to express their gratitude to the Dr. J. Apolinar Reynoso Hernández of the CICESE for provide the RF-PA as device under test.


  1. 1.
    Alasady, H., Ibnkahla, M.: Design and hardware implementation of look-up table predistortion on ALTERA Stratix DSP board. In: Canadian Conference on Electrical and Computer Engineering, pp. 1535–1538 (2008)Google Scholar
  2. 2.
    Asbeck, P., Kobayashi, H., Iwamoto, M., Hanington, G., Nam, S., Larson, L.: Augmented behavioral characterization for modeling the nonlinear response of power amplifiers. In: 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), pp. 135–138 (2002)Google Scholar
  3. 3.
    Azad, R., Ryan, C.: A simple approach to lifetime learning in genetic programming-based symbolic regression. Evol. Comput. 22(2), 287–317 (2014)CrossRefGoogle Scholar
  4. 4.
    Bennadji, A.: Implémentation de modèles comportementaux damplificateurs de puissance dans des environnements de simulation système et co-simulation circuit-système. Ph.D. thesis. Thèse de doctorat Électronique des hautes fréquences et optoélectronique. Communications optiques et micro-ondes Limoges (2006)Google Scholar
  5. 5.
    Biglieri, E., Barberis, S., Catena, M.: Analysis and compensation of nonlinearities in digital transmission systems. IEEE J. Sel. Areas Commun. 6(1), 42–51 (1988)CrossRefGoogle Scholar
  6. 6.
    Kenington, P.B.: High Linearity RF Amplifier Design, 1st edn. Artech House Inc., Norwood (2000)Google Scholar
  7. 7.
    Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion—GECCO 2013 Companion, p. 1121Google Scholar
  8. 8.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  9. 9.
    Ku, H., Kenney, J.S.: Behavioral modeling of nonlinear RF power amplifiers considering memory effects. IEEE Trans. Microw. Theor. Tech. 51(12), 2495–2504 (2003)CrossRefGoogle Scholar
  10. 10.
    Langdon, W., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  11. 11.
    Lei, D.: Digital predistortion of power amplifiers for wireless applications (2004)Google Scholar
  12. 12.
    Li, P.H., Wang, P.: Wiener-saleh modeling of nonlinear RF power amplifiers considering memory effects. In: 2010 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2010, pp. 1447–1449 (2010)Google Scholar
  13. 13.
    Liu, Y.J., Zhou, J., Chen, W., Zhou, B.H.: A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers. IEEE Trans. Industr. Electron. 61(5), 2389–2401 (2014)CrossRefGoogle Scholar
  14. 14.
    Misic, J., Markovic, V., Marinkovic, Z.: Volterra kernels extraction from neural networks for amplifier behavioral modeling. In: 2014 X International Symposium on Telecommunications (BIHTEL), pp. 1–6. IEEE (2014)Google Scholar
  15. 15.
    Mkadem, F., Ayed, M.B., Boumaiza, S., Wood, J., Aaen, P.: Behavioral modeling and digital predistortion of power amplifiers with memory using two hidden layers artificial neural networks. In: 2010 IEEE MTT-S International Microwave Symposium, pp. 656–659 (2010)Google Scholar
  16. 16.
    Moon, J., Saad, P., Son, J., Fager, C., Kim, B.: 2-d enhanced hammerstein behavior model for concurrent dual-band power amplifiers. In: 2012 42nd European, Microwave Conference (EuMC), pp. 1249–1252 (2012)Google Scholar
  17. 17.
    Patelli, A., Ferariu, L.: A regressive schema theory based tool for gp evolved nonlinear models. In: 2011 17th International Conference on Automation and Computing (ICAC), pp. 201–206 (2011)Google Scholar
  18. 18.
    Pedro, J.C., Maas, S.A.: A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microw. Theory Tech. 53(4I), 1150–1163 (2005)Google Scholar
  19. 19.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises, UK (2008)Google Scholar
  20. 20.
    Rawat, M., Member, S., Ghannouchi, F.M.: Three-layered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory. IEEE Trans. Circ. Syst. I Regul. Pap. 60(3), 768–777 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Krieger Publishing Co. Inc, Melbourne (2006)zbMATHGoogle Scholar
  22. 22.
    Staudinger, J., Nanan, J.C., Wood, J.: Memory fading volterra series model for high power infrastructure amplifiers. In: 2010 IEEE Radio and Wireless Symposium, RWW 2010—Paper Digest, pp. 184–187 (2010)Google Scholar
  23. 23.
    Trujillo, L., Legrand, P., Olague, G., Lévy-Véhel, J.: Evolving estimators of the pointwise Hölder exponent with genetic programming. Inf. Sci. 209, 61–79 (2012)CrossRefGoogle Scholar
  24. 24.
    Xiaofang, W., Jianghong, S., Huihuang, C.: On the numerical stability of RF power amplifier’s digital predistortion. In: 15th Asia-Pacific Conference on Communications, 2009. APCC 2009, vol. 3, pp. 430–433 (2009)Google Scholar
  25. 25.
    Xiong, G., Zhou, X., Ji, P.: Implementation of the quadrature waveform generator based on DSP builder. In: 2008 International Symposium on Intelligent Information Technology Application Workshops, pp. 773–776 (2008)Google Scholar
  26. 26.
    Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the effects of local search in genetic programming. In: EVOLVE-A Bridge between, vol. 288, pp. 213–228 (2014)Google Scholar
  27. 27.
    Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: A local search approach to genetic programming for binary classification. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference—GECCO 2015, pp. 1151–1158 (2015)Google Scholar
  28. 28.
    Zhai, J., Zhou, J., Zhang, L., Hong, W.: Behavioral modeling of power amplifiers with dynamic fuzzy networks. IEEE Microw. Wireless Compon. Lett. 20, 528–530 (2010)CrossRefGoogle Scholar
  29. 29.
    Sheng, Z., Xiuyu, S., Wei, W.: An ANN model of optimizing activation functions based on constructive algorithm and GP. In: 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), number Iccasm, pp. V1–420–V1–424. IEEE (2010)Google Scholar
  30. 30.
    Zhu, A., Brazil, T.: Behavioral modeling of RF power amplifiers based on pruned volterra series. IEEE Microw. Wirel. Compon. Lett. 14(12), 563–565 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • J. R. Cárdenas Valdez
    • 1
  • Emigdio Z-Flores
    • 1
  • José Cruz Núñez Pérez
    • 2
  • Leonardo Trujillo
    • 1
  1. 1.Posgrado en Ciencias de la IngenieríaInstituto Tecnológico de TijuanaTijuanaMexico
  2. 2.IPN-CITEDIInstituto Politécnico NacionalTijuanaMexico

Personalised recommendations