NEO 2015 pp 357-375 | Cite as

Profiting from Several Recommendation Algorithms Using a Scalable Approach

  • Daniel Lanza
  • F. Chávez
  • Francisco Fernandez
  • M. Garcia-Valdez
  • Leonardo Trujillo
  • Gustavo Olague
Part of the Studies in Computational Intelligence book series (SCI, volume 663)


This chapter proposes the use of a scalable platform to run a complex recommendation system. We focus on a system made up of several recommendation algorithms which are run as an offline process. This offline process generates user profiles that represent which algorithm should provide the recommendations to a given user and item, and will be combined with a fuzzy decision system to generate every recommendation. Yet, given the amount of data that will be processed and the need to run that offline process frequently, we propose to reduce execution time by using Hadoop, a scalable, distributed and fault-tolerant platform. Obtained results shows how the main goal pursued here is achieved: the efficient use of computer resources which allows for a significant reduction in computing time.


Recommendation System Real Rating Collaborative Filter Recommendation Algorithm Good Recommendation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by FP7-PEOPLE-2013-IRSES, Grant 612689 ACoBSEC, Spanish Ministry of Economy, Project UEX:EPHEMEC (TIN2014-56494-C4-2-P) and CDTI project Smart Cities & Mobile Technologies; Junta de Extremadura, and FEDER, project GR15068. It has also been supported by CONACyT México by the project 155045 – “Evolución de Cerebros Artificiales en Visión por Computadora” and TESE by the project DIMI-MCIM-004/08.


  1. 1.
    Apache Oozie workflow scheduler for Hadoop.
  2. 2.
  3. 3.
    Apache Sqoop: Tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases.
  4. 4.
    Apache Tomcat is an open source software implementation of the Java Servlet, JavaServer Pages, Java Expression Language and Java WebSocket technologies.
  5. 5.
    Apache ZooKeeper: open-source server which enables highly reliable distributed coordination.
  6. 6.
    Aksel, F., Birtürk, A.: Enhancing accuracy of hybrid recommender systems through adapting the domain trends. In: Workshop on the Practical Use of Recommender Systems, Algorithms and Technologies (PRSAT 2010), p. 11 (2010)Google Scholar
  7. 7.
    Al-Shamri, M.Y.H., Bharadwaj, K.K.: Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. Expert Syst. Appl. 35(3), 1386–1399 (2008)CrossRefGoogle Scholar
  8. 8.
    Bagchi, S.: Performance and quality assessment of similarity measures in collaborative filtering using mahout. Procedia Comput. Sci. 50, 229–234 (2015)CrossRefGoogle Scholar
  9. 9.
    Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  10. 10.
    Bao, X., Bergman, L., Thompson, R.: Stacking recommendation engines with additional meta-features. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 109–116. ACM (2009)Google Scholar
  11. 11.
    Bell, R., Koren, Y., Volinsky, C.: Chasing $1,000,000: How we won the Netflix progress prize. ASA Stat. Comput. Gr. Newslett. 18(2), 4–12 (2007)Google Scholar
  12. 12.
    Bellogín, A., Castells, P., Cantador, I.: Self-adjusting hybrid recommenders based on social network analysis. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1147–1148. ACM (2011)Google Scholar
  13. 13.
    Bennett, J., Lanning, S.: The Netflix prize. In: Proceedings of KDD Cup and Workshop, vol. 2007, p. 35 (2007)Google Scholar
  14. 14.
    Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User Adapt. Interact. 10(2–3), 147–180 (2000)CrossRefGoogle Scholar
  15. 15.
    Bobadilla, J., Ortega, F., Hernando, A., GutiéRrez, A.: Recommender systems survey. Know.-Based Syst. 46, 109–132 (2013). doi: 10.1016/j.knosys.2013.03.012 CrossRefGoogle Scholar
  16. 16.
    Burke, R.: Hybrid web recommender systems. In: The Adaptive Web, pp. 377–408. Springer (2007)Google Scholar
  17. 17.
    Clemente, E., Chavez, F., de Vega, F.F., Olague, G.: Self-adjusting focus of attention in combination with a genetic fuzzy system for improving a laser environment control device system. Appl. Soft Comput. 32, 250–265 (2015)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Cordón, O., Herrera, E., Gomide, E., Hoffman, E., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th, vol. 3, pp. 1241–1246. IEEE (2001)Google Scholar
  20. 20.
    Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Evolutionary tuning and learning of fuzzy knowledge bases (2001)Google Scholar
  21. 21.
    De Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Rueda-Morales, M.A.: Combining content-based and collaborative recommendations: a hybrid approach based on Bayesian networks. Int. J. Approx. Reason. 51(7), 785–799 (2010)CrossRefGoogle Scholar
  22. 22.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  23. 23.
    Eyjolfsdottir, E.A., Tilak, G., Li, N.: Moviegen: A movie recommendation system. Technical report, UC Santa Barbara (2010)Google Scholar
  24. 24.
    Gacto, M.J., Galende, M., Alcalá, R., Herrera, F.: Metsk-hd e: a multiobjective evolutionary algorithm to learn accurate tsk-fuzzy systems in high-dimensional and large-scale regression problems. Inf. Sci. 276, 63–79 (2014)CrossRefGoogle Scholar
  25. 25.
    Garcia-Valdez, M., Alanis, A., Parra, B.: Fuzzy inference for learning object recommendation. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–6. IEEE (2010)Google Scholar
  26. 26.
    Girase, S., Mukhopadhyay, D., et al.: An Item-Based Collaborative Filtering using Dimensionality Reduction Techniques on Mahout Framework (2015). arXiv preprint arXiv:1503.06562
  27. 27.
    Hadoop: Distributed scalable fault-tolerance framework for data processing (2015).
  28. 28.
    HBase: HBase, distributed and scalable database (2015).
  29. 29.
    Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. evol. intell. 1(1), 27–46 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Jiang, J., Lu, J., Zhang, G., Long, G.: Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop. In: 2011 IEEE World Congress on Services (SERVICES), pp. 490–497. IEEE (2011)Google Scholar
  31. 31.
    Koren, Y.: The bellkor solution to the Netflix grand prize. Netflix Prize Doc. 81 (2009)Google Scholar
  32. 32.
    Leung, C.W.K., Chan, S.C.F., Chung, Fl: An empirical study of a cross-level association rule mining approach to cold-start recommendations. Knowl.-Based Syst. 21(7), 515–529 (2008)CrossRefGoogle Scholar
  33. 33.
    Lu, J., Shambour, Q., Xu, Y., Lin, Q., Zhang, G.: A web-based personalized business partner recommendation system using fuzzy semantic techniques. Comput. Intell. 29(1), 37–69 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mahout: Mahout, machine learning library for Big Data solutions (2015).
  35. 35.
    Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning, Shelter Island (2011)Google Scholar
  36. 36.
    Pandey, S., Kumar, T.S.: Costomization of recommendation system using collaborative filtering algorithm on cloud using mahout. Int. J. Res. Eng. Technol. 3(7), 39–43 (2014)CrossRefGoogle Scholar
  37. 37.
    Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)CrossRefGoogle Scholar
  38. 38.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: The Adaptive Web, pp. 325–341. Springer (2007)Google Scholar
  39. 39.
    Porcel, C., Lizarte, M., Herrera-Viedma, E.: Un sistema de recomendaciones lingüístico difuso para el filtrado de material docenteGoogle Scholar
  40. 40.
    Robin, B.: Hybrid recommender systems: survey and experiments. User Model. Adapt. Interact. 12, 331–370 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)Google Scholar
  42. 42.
    Schelter, S., Boden, C., Schenck, M., Alexandrov, A., Markl, V.: Distributed matrix factorization with MapReduce using a series of broadcast-joins. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 281–284. ACM, New York (2013). doi: 10.1145/2507157.2507195
  43. 43.
    Seminario, C.E., Wilson, D.C.: Case study evaluation of mahout as a recommender platform. In: Workshop on Recommendation Utility Evaluation: Beyond RMSE, Held in Conjunction with ACM in Ireland (2012)Google Scholar
  44. 44.
    Shih, Y.Y., Liu, D.R.: Hybrid recommendation approaches: collaborative filtering via valuable content information. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005. HICSS 2005, pp. 217b–217b. IEEE (2005)Google Scholar
  45. 45.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE (2010)Google Scholar
  46. 46.
    Stigler, S.M.: Francis Galton’s account of the Invention of correlation. Statist. Sci. 4(2), 73–79 (1989). doi: 10.1214/ss/1177012580 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)CrossRefGoogle Scholar
  48. 48.
    Trewin, S.: Knowledge-based recommender systems. Encycl. Libr. Inf. Sci. 69(Supplement 32), 180 (2000)Google Scholar
  49. 49.
    van Setten, M.: Supporting people in finding information. Ph.D. Telematica Instituut (2005)Google Scholar
  50. 50.
    Vinodhini, S., Rajalakshmi, V., Govindarajulu, B.: Building personalised recommendation system with big data and hadoop MapReduce. Int. J. Eng. Res. Technol. 3(4) (2014)Google Scholar
  51. 51.
    Walunj, S.G., Sadafale, K.: An online recommendation system for e-commerce based on apache mahout framework. In: Proceedings of the 2013 Annual Conference on Computers and People Research, pp. 153–158. ACM (2013)Google Scholar
  52. 52.
    Wang, L., Meng, X., Zhang, Y., Shi, Y.: New approaches to mood-based hybrid collaborative filtering. In: CAMRa 2010: Proceedings of the Workshop on Context-Aware Movie Recommendation. ACM Request Permissions (2010)Google Scholar
  53. 53.
    Xu, R., Wang, S., Zheng, X., Chen, Y.: Distributed collaborative filtering with singular ratings for large scale recommendation. J. Syst. Softw. 95, 231–241 (2014)CrossRefGoogle Scholar
  54. 54.
    Zhang, Z., Lin, H., Liu, K., Wu, D., Zhang, G., Lu, J.: A hybrid fuzzy-based personalized recommender system for telecom products/services. Inf. Sci. 235, 117–129 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Daniel Lanza
    • 1
  • F. Chávez
    • 2
  • Francisco Fernandez
    • 2
  • M. Garcia-Valdez
    • 3
  • Leonardo Trujillo
    • 3
  • Gustavo Olague
    • 4
  1. 1.European Organisation for Nuclear Research (CERN)GenevaSwitzerland
  2. 2.University de ExtremaduraBadajozSpain
  3. 3.Instituto Tecnológico de TijuanaTijuanaMexico
  4. 4.Centro de Investigacion Cientifica y de Educacion Superior de EnsenadaEnsenadaMexico

Personalised recommendations