Robustness of Expressivity in Chemical Reaction Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9818)

Abstract

We show that some natural output conventions for error-free computation in chemical reaction networks (CRN) lead to a common level of computational expressivity. Our main results are that the standard definition of error-free CRNs have equivalent computational power to (1) asymmetric and (2) democratic CRNs. The former have only “yes” voters, with the interpretation that the CRN’s output is yes if any voters are present and no otherwise. The latter define output by majority vote among “yes” and “no” voters.

Both results are proven via a generalized framework that simultaneously captures several definitions, directly inspired by a recent Petri net result of Esparza, Ganty, Leroux, and Majumder [CONCUR 2015]. These results support the thesis that the computational expressivity of error-free CRNs is intrinsic, not sensitive to arbitrary definitional choices.

Notes

Acknowledgements

R.B. thanks Grzegorz Rozenberg for interesting and useful discussions regarding chemical reaction networks. D.D. thanks Ryan James for suggesting the democratic CRD model. The authors are grateful to the anonymous reviewers for comments that have helped improve the presentation.

References

  1. 1.
    Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space trade-offs in population protocols. Technical report (2016). arXiv:1602.08032
  2. 2.
    Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 479–491. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 292–299. ACM Press, New York (2006)Google Scholar
  5. 5.
    Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distrib. Comput. 21(3), 183–199 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)CrossRefMATHGoogle Scholar
  7. 7.
    Brijder, R.: Output Stability and semilinear sets in chemical reaction networks and deciders. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 100–113. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical reaction networks. Nat. Comput. 15, 1–17 (2015)MathSciNetMATHGoogle Scholar
  10. 10.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with \(n\) distinct prime factors. Am. J. Math. 35, 413–422 (1913)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. Nat. Comput. 14(2), 213–223 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Doty, D., Soloveichik, D.: Stable leader election in population protocols requires linear time. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 602–616. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population protocols. In 26th International Conference on Concurrency Theory (CONCUR 2015), vol. 42, pp. 470–482 (2015)Google Scholar
  14. 14.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  15. 15.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pac. J. Math. 16(2), 285–296 (1966)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hopcroft, J.E., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector addition systems. Theoret. Comput. Sci. 8, 135–159 (1979)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moore, E.F.: Gedanken-experiments on sequential machines. Automata Stud. 34, 129–153 (1956)MathSciNetGoogle Scholar
  20. 20.
    Peterson, J.L.: Petri nets. ACM Comput. Surv. 9(3), 223–252 (1977)CrossRefMATHGoogle Scholar
  21. 21.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Hasselt UniversityDiepenbeekBelgium
  2. 2.University of CaliforniaDavisUSA
  3. 3.University of TexasAustinUSA

Personalised recommendations