Advertisement

Programming Discrete Distributions with Chemical Reaction Networks

  • Luca Cardelli
  • Marta Kwiatkowska
  • Luca LaurentiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9818)

Abstract

We explore the range of probabilistic behaviours that can be engineered with Chemical Reaction Networks (CRNs). We show that at steady state CRNs are able to “program” any distribution with finite support in \(\mathbb {N}^m\), with \(m \ge 1\). Moreover, any distribution with countable infinite support can be approximated with arbitrarily small error under the \(L^1\) norm. We also give optimized schemes for special distributions, including the uniform distribution. Finally, we formulate a calculus to compute on distributions that is complete for finite support distributions, and can be compiled to a restricted class of CRNs that at steady state realize those distributions.

References

  1. 1.
    Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anderson, D.F., Kurtz, T.G.: Continuous time Markov chain models for chemical reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Design and Analysis of Biomolecular Circuits, pp. 3–42. Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Anderson, J.C., Clarke, E.J., Arkin, A.P., Voigt, C.A.: Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355(4), 619–627 (2006)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda \)-infected Escherichia coli cells. Genetics 149(4), 1633–1648 (1998)Google Scholar
  6. 6.
    Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2 (2012)Google Scholar
  7. 7.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions with chemical reaction networks (2016). arXiv preprint arXiv:1601.02578
  9. 9.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Natural Comput. 13(4), 517–534 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  11. 11.
    Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature 467(7312), 167–173 (2010)CrossRefGoogle Scholar
  12. 12.
    Fett, B., Bruck, J., Riedel, M.D.: Synthesizing stochasticity in biochemical systems. In: 2007 44th ACM/IEEE Design Automation Conference, DAC 2007, pp. 640–645. IEEE (2007)Google Scholar
  13. 13.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Losick, R., Desplan, C.: Stochasticity and cell fate. Science 320(5872), 65–68 (2008)CrossRefGoogle Scholar
  15. 15.
    Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 114–131. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Schmiedel, J.M., Klemm, S.L., Zheng, Y., Sahay, A., Blüthgen, N., Marks, D.S., van Oudenaarden, A.: MicroRNA control of protein expression noise. Science 348(6230), 128–132 (2015)CrossRefGoogle Scholar
  17. 17.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luca Cardelli
    • 1
    • 2
  • Marta Kwiatkowska
    • 2
  • Luca Laurenti
    • 2
    Email author
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations