Selecting Keypoint Detector and Descriptor Combination for Augmented Reality Application

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9811)

Abstract

In this paper, we compare the performance of image keypoints detectors and descriptors on well known Oxford dataset. We use evaluation criteria which were presented by Mikolajczyk et al. [12, 13]. We created most of the possible combinations of keypoint detector and descriptor, but in this paper, we present only selected pairs. The best performing detector and descriptor pair are selected for future research, mainly with the focus on augmented reality.

Keywords

Keypoint detector Keypoint descriptor Feature extraction Augmented reality 

References

  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)Google Scholar
  3. 3.
    Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  4. 4.
    Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 214–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 759–773. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Leutenegger, S., Chli, M., Siegwart, R.: Brisk: binary robust invariant scalable keypoints. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 2548–2555. IEEE Computer Society, Barcelona (2011)Google Scholar
  9. 9.
    Levi, G., Hassner, T.: LATCH: learned arrangements of three patch codes (2015). CoRR abs/1501.03719
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Mair, E., Hager, G.D., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and generic corner detection based on the accelerated segment test. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 183–196. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  14. 14.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)CrossRefGoogle Scholar
  16. 16.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE Computer Society, Washington, DC (2011)Google Scholar
  17. 17.
    Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  18. 18.
    Ziegler, A., Christiansen, E., Kriegman, D., Belongie, S.J.: Locally uniform comparison image descriptor. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1–9. Curran Associates, Inc/, Red Hook (2012)Google Scholar
  19. 19.
    Zitnick, C.L., Ramnath, K.: Edge foci interest points. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV, pp. 359–366. IEEE Computer Society (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Applied Sciences, New Technologies for the Information SocietyUniversity of West BohemiaPilsenCzech Republic

Personalised recommendations