DNN-Based Acoustic Modeling for Russian Speech Recognition Using Kaldi

  • Irina Kipyatkova
  • Alexey Karpov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9811)


In the paper, we describe a research of DNN-based acoustic modeling for Russian speech recognition. Training and testing of the system was performed using the open-source Kaldi toolkit. We created tanh and p-norm DNNs with a different number of hidden layers and a different number of hidden units of tanh DNNs. Testing of the models was carried out on very large vocabulary continuous Russian speech recognition task. We obtained a relative WER reduction of 20 % comparing to the baseline GMM-HMM system.


Deep neural networks Acoustic models Automatic speech recognition Russian speech 



This research is partially supported by the Council for Grants of the President of the Russian Federation (projects No. MK-5209.2015.8 and MD-3035.2015.8), by the Russian Foundation for Basic Research (projects No. 15-07-04415 and 15-07-04322), and by the Government of the Russian Federation (grant No. 074-U01).


  1. 1.
    Yu, D., Deng, L.: Automatic Speech Recognition - A Deep Learning Approach. Springer, London (2015)Google Scholar
  2. 2.
    Povey, D. et al.: The Kaldi speech recognition toolkit. In: IEEE Workshop on Automatic Speech Recognition and Understanding ASRU (2011)Google Scholar
  3. 3.
    Veselý, K. et al.: Sequence-discriminative training of deep neural networks. In: INTERSPEECH 2013, pp. 2345–2349 (2013)Google Scholar
  4. 4.
    Povey, D., Zhang, X., Khudanpur, S.: Parallel training of DNNs with natural gradient and parameter averaging. preprint arXiv:1410.7455 (2014)
  5. 5.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. (NIPS) 19, 153–160 (2007)Google Scholar
  6. 6.
    Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: INTERSPEECH-2011, pp. 437–440 (2011)Google Scholar
  7. 7.
    Dahl, G., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)CrossRefGoogle Scholar
  8. 8.
    Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: INTERSPEECH-2011, pp. 437–440 (2011)Google Scholar
  9. 9.
    Ellis, D.P.W., Singh, R., Sivadas, S.: Tandem acoustic modeling in large-vocabulary recognition. In: International Conference on Acoustics, Speech and Signal Processing ICASSP 2001, pp. 517–520 (2001)Google Scholar
  10. 10.
    Grezl, F., Karafiat, M., Kontar, S., Cernocky, J.: Probabilistic and bottle-neck features for LVCSR of meetings. In: ICASSP 2007, pp. 757–760 (2007)Google Scholar
  11. 11.
    Maas, A.L. et al.: Building DNN Acoustic Models for Large Vocabulary Speech Recognition. preprint arXiv:1406.7806, (2015)
  12. 12.
    Cosi, P.: A KALDI-DNN-based ASR system for Italian. In: IEEE International Joint Conference on Neural Networks IJCNN 2015, pp. 1–5 (2015)Google Scholar
  13. 13.
    Popović, B., Ostrogonac, S., Pakoci, E., Jakovljević, N., Delić, V.: Deep neural network based continuous speech recognition for Serbian using the Kaldi toolkit. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS, vol. 9319, pp. 186–192. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Miao, Y.: Kaldi+PDNN: building DNN-based ASR systems with Kaldi and PDNN. arXiv preprint arXiv:1401.6984, (2014)
  15. 15.
    Zulkarneev, M.Yu., Penalov, S.A.: System of speech recognition for Russian language, using deep neural networks and finite state transducers. Neurocomput. Dev. Appl. 10, 40–46 (2013). (in Russia)Google Scholar
  16. 16.
    Tomashenko, N., Khokhlov, Y.: Speaker adaptation of context dependent deep neural networks based on MAP-adaptation and GMM-derived feature processing. In: INTERSPEECH 2014, Singapore, pp. 2997–3001 (2014)Google Scholar
  17. 17.
    Prudnikov, A., Medennikov, I., Mendelev, V., Korenevsky, M., Khokhlov, Y.: Improving acoustic models for Russian spontaneous speech recognition. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS, vol. 9319, pp. 234–242. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, X. et al.: Improving deep neural network acoustic models using generalized maxout networks. In: ICASSP 2014, pp. 215–219 (2014)Google Scholar
  19. 19.
    Karpov, A., Markov, K., Kipyatkova, I., Vazhenina, D., Ronzhin, A.: Large vocabulary Russian speech recognition using syntactico-statistical language modeling. Speech Commun. 56, 213–228 (2014)CrossRefGoogle Scholar
  20. 20.
    State Standard P 50840-95. Speech transmission by communication paths. Evaluation methods of quality, intelligibility and recognizability, Moscow. Standartov Publ. (1996) (in Russia)Google Scholar
  21. 21.
    Stepanova, S.B.: Phonetic features of Russian speech: realization and transcription. Ph.D. Thesis (1988) (in Russia)Google Scholar
  22. 22.
    Kipyatkova, I., Karpov, A.: Lexicon size and language model order optimization for Russian LVCSR. In: Železný, M., Habernal, I., Ronzhin, A. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 219–226. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: ICASSP 1995, pp. 181–184 (1995)Google Scholar
  24. 24.
    Stolcke, A., Zheng, J., Wang, W., Abrash, V.: SRILM at sixteen: update and outlook. In: ASRU 2011, Waikoloa, Hawaii, USA (2011)Google Scholar
  25. 25.
    Kipyatkova, I., Karpov, A., Verkhodanova, V., Zelezny, M.: Analysis of long-distance word dependencies and pronunciation variability at conversational Russian speech recognition. In: Federated Conference on Computer Science and Information Systems, FedCSIS 2012, pp. 719–725 (2012)Google Scholar
  26. 26.
    Karpov, A., Kipyatkova, I., Ronzhin, A.: Very large vocabulary ASR for spoken Russian with syntactic and morphemic analysis. In: INTERSPEECH 2011, Florence, Italy, pp. 3161–3164 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)St. PetersburgRussia
  2. 2.St. Petersburg State University of Aerospace Instrumentation (SUAI)St. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations