Comparative Analysis of Classifiers for Automatic Language Recognition in Spontaneous Speech

  • Konstantin Simonchik
  • Sergey Novoselov
  • Galina Lavrentyeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9811)


In this paper we consider a language identification system based on the state-of-the-art i-vector method. Paper presents a comparative analysis of different methods for the classification in the i-vector space to determine the most efficient for this task. Experimental results show the reliability of the method based on linear discriminant analysis and naive Bayes classifier which is sufficient for usage in practical applications.


Language recognition i-vectors SVM LDA Naive bayes 



This work was financially supported by the Ministry of Education and Science of the Russian Federation, Contract 14.578.21.0126 (ID RFMEFI57815X0126).


  1. 1.
    Singer, E., Torres-Carrasquillo, P.A., Gleason, T.P., Campbell, W.M., Reynolds, D.A.: Acoustic, phonetic and discriminative approaches to automatic language identification. In: Proceedings of Eurospeech, pp. 1345–1348, September 2003Google Scholar
  2. 2.
    Torres-Carrasquillo, P.A., Singer, E., Kohler, M.A., Greene, R.J., Reynolds, D.A., Deller Jr., J.R.: Approaches to language identification using Gaussian mixture models and shifted delta cepstral features. In: Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), September 2002Google Scholar
  3. 3.
    Dehak, N., Torres-Carrasquillo, P.A., Reynolds, D.A., Dehak, R.: Language recognition via i-vectors and dimensionality reduction. In: Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 857–860, August 2011Google Scholar
  4. 4.
    Lei, Y., Scheffer, N., Ferrer, L., McLaren, M.: A novel scheme for speaker recognition using a phonetically-aware deep neural network. In: Acoustics, Speech and Signal Processing (ICASSP), pp. 1695–1699, May 2014Google Scholar
  5. 5.
    Lopez-Moreno, I., Gonzalez-Dominguez, J., Plchot, O., Martinez, D., Gonzalez-Rodriguez, J., Moreno, P.: Automatic language identification using deep neural networks. In: Acoustics, Speech and Signal Processing (ICASSP), pp. 5337–5341, May 2014Google Scholar
  6. 6.
    Novoselov, S.A., Pekhovsky, T.S., Simonchik, K.K., Shulipa, A.K.: RBM-PLDA subsystem for the NIST i-vector challenge. In: Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 378–382 (2014)Google Scholar
  7. 7.
    Simonchik, K., Aleinik, S., Ivanko, D., Lavrentyeva, G.: Automatic preprocessing technique for detection of corrupted speech signal fragments for the purpose of speaker recognition. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS, vol. 9319, pp. 121–128. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Kohler, M.A., Kennedy, M.: Language identification using shifted delta cepstra. In: Circuits and Systems, vol. 3, pp. 69–72, August 2002Google Scholar
  9. 9.
    NIST Speaker Recognition Evaluation.
  10. 10.
    NIST Language Recognition Evaluation.
  11. 11.
    The 2007 NIST Language Recognition Evaluation Plan.
  12. 12.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  13. 13.
    Rao, R.C.: The utilization of multiple measurements in problems of biological classification. J. Roy. Stat. Soc. B 10(2), 159–203 (1948)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Narasimha Murty, M., Susheela Devi, V.: Pattern Recognition: An Algorithmic Approach. Springer, London (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Konstantin Simonchik
    • 1
    • 2
  • Sergey Novoselov
    • 1
    • 2
  • Galina Lavrentyeva
    • 1
    • 2
  1. 1.ITMO UniversitySaint-PetersburgRussia
  2. 2.Speech Technology CenterSaint-PetersburgRussia

Personalised recommendations