An Analysis of Visual Faces Datasets

  • Ivan Gruber
  • Miroslav Hlaváč
  • Marek Hrúz
  • Miloš Železný
  • Alexey Karpov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9812)

Abstract

This paper presents an analysis of datasets of images of human faces with annotated facial keypoints, which are important in human-machine interaction, and their comparison. Datasets are divided according to external conditions of the subject into two groups: datasets in laboratory conditions and in the wild data. Moreover, a quick review of the state-of-the-art methods for keypoints detection is provided. Existing methods are categorized into the following three groups according to the approach to the solution of the problem: top-down, bottom-up and their combination.

Keywords

Facial keypoint Keypoints detection Facial landmark localization Dataset Computer vision 

Notes

Acknowledgments

This work is supported by grant of the University of West Bohemia, project No. SGS-2016-039, by Ministry of Education, Youth and Sports of Czech Republic, project No. LO1506, by Russian Foundation for Basic Research, project No. 15-07-04415, and by the Government of Russian, grant No. 074-U01.

References

  1. 1.
    Milborrow, S., Morkel, J., Nicolls, F.: The MUCT landmarked face database. Pattern Recogn. Assoc. S. Afr. 201(0), 179–184 (2010)Google Scholar
  2. 2.
    Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–157 (2004)CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. In: Imaging Science and Biomedical Engineering, University of Manchester, pp. 149–163 (2004)Google Scholar
  4. 4.
    Antonakos, E., Alabort-i-Medina, J., Zaferiou, S.: Active pictorial structures. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, pp. 5435–5444 (2015)Google Scholar
  5. 5.
    Yu, X., Huang, J., Zhang, S.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: IEEE International Conference on Computer Vision, Sydney, pp. 1944–1951 (2013)Google Scholar
  6. 6.
    Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: IEEE International Conference on Computer Vision, Sydney, pp. 1513–1520 (2013)Google Scholar
  7. 7.
    Asthana, A., Zaferiou, S., Cheng, S.: Incremental face alignment in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 3659–3667 (2014)Google Scholar
  8. 8.
    Tzimiropoulos, G.: Project-out cascaded regression with an application to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, pp. 3659–3667. IEEE (2015)Google Scholar
  9. 9.
    Zhang, J., Kan, M., Shan, S., Chen, X.: Leveraging datasets with varying annotations for face alignment via deep regression network. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp. 3801–3809 (2015)Google Scholar
  10. 10.
    Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 94–108 (2014)Google Scholar
  11. 11.
    Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1867–1874 (2014)Google Scholar
  12. 12.
    Yu, X., Lin, Z., Brandt, J., Metaxas, D.N.: Consensus of regression for occlusion-robust facial feature localization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 105–118. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Ghiasi, G., Fowlkes, C.: Using segmentation to predict the absence of occluded parts. In: Proceeding of British Machine Vision Conference (BMVC) (2015)Google Scholar
  14. 14.
    Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment via regressing local binary features. Proc. IEEE Trans. Image Process. 25(3), 1233–1245 (2016)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: Proceedings of 24th IEEE Conference on Computer Vision and Pattern Recognition, vol. 35, no. 12, pp. 2930–2940 (2011)Google Scholar
  16. 16.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Zhu, X., Ramanan, D.: Face detection, pose estimation and landmark localization in the wild. In: Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island (2012)Google Scholar
  19. 19.
    Koestinger, M., Wohlhart, P., Roth, P.M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies, Barcelona, pp. 2144–2151 (2011)Google Scholar
  20. 20.
    Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation under occlusion. In: ICCV 2013, Sydney, Australia (2013)Google Scholar
  21. 21.
    Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: the first facial landmark localization challenge. In: Proceedings of IEEE International Conference on Computer Vision (ICCV-W 2013), 300 Faces in-the-Wild Challenge (300-W), Sydney, Australia, pp. 397–403 (2013)Google Scholar
  22. 22.
    Hasan, K., Moalem, M., Pal, C.: Localizing facial keypoints with global descriptor search, neighbour alignment and locally linear models. In: IEEE International Conference on Computer Vision Workshops (ICCVW), Sydney, pp. 362–369 (2013)Google Scholar
  23. 23.
    Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: Multi-PIE. In: Proceedings of The Eighth IEEE International Conference on Automatic Face and Gesture Recognition (2008)Google Scholar
  24. 24.
    Messer, K., Matas, J., Kittler, J., Jonsson, J.: XM2VTSDB: the extended M2VTS database. In: Proceedings of Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  25. 25.
    Císař, P., Železný, M., Krňoul, Z., Kanis, J., Zelinka, J., Müller, L.: Design and recording of Czech speech corpus for audio-visual continuous speech recognition. In: Proceedings of the Auditory-Visual Speech Processing International Conference 2005, Vancouver Island, pp. 1–4 (2005)Google Scholar
  26. 26.
    Giraudel, A., Carré, M., Mapelli, V., Kahn, J., Galibert, O., Quintard, L.: The REPERE corpus : a multimodal corpus for person recognition. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ivan Gruber
    • 1
    • 2
    • 3
  • Miroslav Hlaváč
    • 1
    • 3
  • Marek Hrúz
    • 2
  • Miloš Železný
    • 1
  • Alexey Karpov
    • 3
    • 4
  1. 1.Faculty of Applied Sciences, Department of CyberneticsUWBPilsenCzech Republic
  2. 2.Faculty of Applied Sciences, NTISUWBPilsenCzech Republic
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.SPIIRASSt. PetersburgRussia

Personalised recommendations