Advertisement

Probabilistic Model of Neuronal Background Activity in Deep Brain Stimulation Trajectories

  • Eduard Bakstein
  • Tomas Sieger
  • Daniel Novak
  • Robert Jech
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9832)

Abstract

We present a probabilistic model for classification of micro-EEG signals, recorded during deep brain stimulation surgery for Parkinson’s disease. The model uses parametric representation of neuronal background activity, estimated using normalized root-mean-square of the signal. Contrary to existing solutions using Bayes classifiers or Hidden Markov Models, our model uses smooth state-transitions represented by sigmoid functions, which ensures flexible model structure in combination with general optimizers for parameter estimation and model fitting. The presented model can easily be extended with additional parameters and constraints and is intended for fitting of a 3D anatomical model to micro-EEG data in further perspective. In an evaluation on 260 trajectories from 61 patients, the model showed classification accuracy 90.0 %, which was comparable to existing solutions. The evaluation proved the model successful in target identification and we conclude that its use for more complex tasks in the area of DBS planning and modeling is feasible.

Keywords

Deep brain stimulation Microelectrode recordings Probabilistic model 

Notes

Acknowledgement

The work presented in this paper has been supported by the students’ grant agency of the CTU, no. SGS16/231/OHK3/3T/13, and by the Grant Agency of the Czech republic, grant no. 16-13323S.

References

  1. 1.
    Abosch, A., Timmermann, L., Bartley, S., Rietkerk, H.G., Whiting, D., Connolly, P.J., Lanctin, D., Hariz, M.I.: An international survey of deep brain stimulation procedural steps. Stereotact. Funct. Neurosurg. 91(1), 1–11 (2013)CrossRefGoogle Scholar
  2. 2.
    Aboy, M., Falkenberg, J.H.: An automatic algorithm for stationary segmentation of extracellular microelectrode recordings. Med. Biol. Eng. Comput. 44(6), 511–515 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16937202 CrossRefGoogle Scholar
  3. 3.
    Bakstein, E., Schneider, J., Sieger, T., Novak, D., Wild, J., Jech, R.: Supervised segmentation of microelectrode recording artifacts using power spectral density. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2015-Novem, pp. 1524–1527. IEEE, August 2015. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7318661
  4. 4.
    Benabid, A.L., Pollak, P., Gao, D., Hoffmann, D., Limousin, P., Gay, E., Payen, I., Benazzouz, A.: Chronic electrical stimulation of the ventralisintermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84(2), 203–214 (1996). http://dx.doi.org/10.3171/jns.1996.84.2.0203 CrossRefGoogle Scholar
  5. 5.
    Cagnan, H., Dolan, K., He, X., Contarino, M.F., Schuurman, R., van den Munckhof, P., Wadman, W.J., Bour, L., Martens, H.C.F.: Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity. J. Neural. Eng. 8(4), 46006 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21628771, http://dx.doi.org/10.1088/1741-2560/8/4/046006 CrossRefGoogle Scholar
  6. 6.
    Gross, R.E., Krack, P., Rodriguez-Oroz, M.C., Rezai, A.R., Benabid, A.L.: Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov. Disord. 21(Suppl. 1), S259–S283 (2006). http://dx.doi.org/10.1002/mds.20960 CrossRefGoogle Scholar
  7. 7.
    Guillen, P., Martinez-de Pison, F., Sanchez, R., Argaez, M., Velazquez, L.: Characterization of subcortical structures during deep brain stimulation utilizing support vector machines. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 7949–7952. IEEE, August 2011. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6091960, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6091960
  8. 8.
    Hammerla, N.Y., Plötz, T.: Let’s (not) stick together: pairwise similarity biases cross-validation in activity recognition. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1041–1051 (2015)Google Scholar
  9. 9.
    Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root meansquare measure. Mov. Disord. 21(9), 1425–1431 (2006). http://www.ncbi.nlm.nih.gov/pubmed/16763982, http://dx.doi.org/10.1002/mds.20995 CrossRefGoogle Scholar
  10. 10.
    Novak, P., Daniluk, S., Ellias, S.A., Nazzaro, J.M.: Detection of the subthalamic nucleus in microelectrographic recordings in Parkinson disease using the high-frequency (\(> 500\) hz) neuronal background. J. Neurosurg. 106(1), 175–179 (2007). http://dx.doi.org/10.3171/jns.2007.106.1.175
  11. 11.
    Novak, P., Przybyszewski, A.W., Barborica, A., Ravin, P., Margolin, L., Pilitsis, J.G.: Localization of the subthalamic nucleus in Parkinson disease using multiunit activity. J. Neurol. Sci. 310(1–2), 44–49 (2011). http://linkinghub.elsevier.com/retrieve/pii/S0022510X11004448 CrossRefGoogle Scholar
  12. 12.
    Shamir, R.R., Zaidel, A., Joskowicz, L., Bergman, H., Israel, Z.: Microelectrode recording duration and spatial density constraints for automatic targeting of the subthalamic nucleus. Stereotact. Funct. Neurosurg. 90(5), 325–334 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22854414, http://www.karger.com/doi/10.1159/000338252 CrossRefGoogle Scholar
  13. 13.
    Taghva, A.: Hidden Semi-Markov Models in the computerized decoding of microelectrode recording data for deep brain stimulator placement. World Neurosurg. 75(5-6), 758–763.e4 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21704949, http://linkinghub.elsevier.com/retrieve/pii/S187887501000848X
  14. 14.
    Zaidel, A., Spivak, A., Shpigelman, L., Bergman, H., Israel, Z.: Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model. Mov. Disord. 24(12), 1785–1793 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19533755, http://dx.doi.org/10.1002/mds.22674 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eduard Bakstein
    • 1
  • Tomas Sieger
    • 1
    • 2
  • Daniel Novak
    • 1
  • Robert Jech
    • 2
  1. 1.Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University HospitalCharles University in PraguePragueCzech Republic

Personalised recommendations