Advertisement

Filter Bank Common Spatio-Spectral Patterns for Motor Imagery Classification

  • Ayhan Yuksel
  • Tamer Olmez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9832)

Abstract

In this study, a new spatio-spectral filtering method for motor imagery signal analysis is introduced. Motor imagery is an important research area in brain computer interfacing. EEG signals related with motor imagery have characteristic frequencies originating from sensorimotor cortex. Common spatial patterns (CSP) method is a very popular and successful spatial filtering algorithm in motor imagery classification. However, CSP only optimizes spatial filters, subject specific frequency selection should be done manually, which is a meticulous process. Therefore, an automatic method for spectral filter optimization is needed. Proposed filter bank common spatio-spectral patterns (FBCSSP) algorithm optimizes spatial and spectral filters. FBCSSP method uses a network of a filter bank and two consecutive CSP layers so that proposed structure has a subject specific response in both spatial and spectral domains. We inspected the proposed method in terms of classification accuracy and physiological consistence of the created filters using publicly available data set. FBCSSP method gave higher classification accuracy than other spatio-spectral pattern methods in the literature. Also, obtained spatial and spectral filters were consistent with the spatial and spectral properties of motor imagery signals.

Keywords

Brain computer interfaces (BCI) Motor imagery (MI) Electroencephalogram (EEG) Common spatial patterns (CSP) 

References

  1. 1.
    Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE International Joint Conference on Neural Networks 2008, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 2390–2397. IEEE (2008)Google Scholar
  2. 2.
    Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Classification of covariance matrices using a riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013)CrossRefGoogle Scholar
  3. 3.
    Blankertz, B., Muller, K.R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schlogl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., et al.: The BCI competition 2003: progress and perspectives in detection and discrimination of eeg single trials. IEEE Trans. Biomed. Eng. 51(6), 1044–1051 (2004)CrossRefGoogle Scholar
  4. 4.
    Blankertz, B., Muller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, G., Millan, J.R., Schroder, M., Birbaumer, N.: The BCI competition iii: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)CrossRefGoogle Scholar
  5. 5.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2008)CrossRefGoogle Scholar
  6. 6.
    Dornhege, G., Blankertz, B., Curio, G., Muller, K.: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)CrossRefGoogle Scholar
  7. 7.
    Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., Muller, K.R.: Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans. Biomed. Eng. 53(11), 2274–2281 (2006)CrossRefGoogle Scholar
  8. 8.
    Falzon, O., Camilleri, K.P., Muscat, J.: The analytic common spatial patterns method for EEG-based BCI data. J. Neural Eng. 9(4), 045009 (2012)CrossRefGoogle Scholar
  9. 9.
    Higashi, H., Tanaka, T.: Simultaneous design of FIR filter banks and spatial patterns for EEG signal classification. IEEE Trans. Biomed. Eng. 60(4), 1100–1110 (2013)CrossRefGoogle Scholar
  10. 10.
    LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B.: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10(4), 046003 (2013)CrossRefGoogle Scholar
  11. 11.
    Lemm, S., Blankertz, B., Curio, G., Müller, K.R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)CrossRefGoogle Scholar
  12. 12.
    McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 103(3), 386–394 (1997)CrossRefGoogle Scholar
  13. 13.
    Novi, Q., Guan, C., Dat, T.H., Xue, P.: Sub-band common spatial pattern (SBCSP) for brain-computer interface. In: 3rd International IEEE/EMBS Conference on Neural Engineering 2007, CNE 2007, pp. 204–207. IEEE (2007)Google Scholar
  14. 14.
    Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1), 153–159 (2006)CrossRefGoogle Scholar
  15. 15.
    Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  16. 16.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  17. 17.
    Tomioka, R., Dornhege, G., Nolte, G., Blankertz, B., Aihara, K., Müller, K.R.: Spectrally weighted common spatial pattern algorithm for single trial EEG classification. Department of Mathematical Engineering, University of Tokyo, Tokyo, Japan, Technical report 40 (2006)Google Scholar
  18. 18.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  19. 19.
    Yuksel, A., Olmez, T.: A neural network-based optimal spatial filter design method for motor imagery classification. PloS one 10(5), e0125039 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations