Stochastic Bounds and Histograms for Active Queues Management and Networks Analysis

  • Farah Aït-SalahtEmail author
  • Hind Castel-Taleb
  • Jean-Michel Fourneau
  • Nihal Pekergin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9845)


We present an extension of a methodology based on monotonicity of various networking elements and measurements performed on real networks. Assuming the stationarity of flows, we obtain histograms (distributions) for the arrivals. Unfortunately, these distributions have a large number of values and the numerical analysis is extremely time-consuming. Using the stochastic bounds and the monotonicity of the networking elements, we show how we can obtain, in a very efficient manner, guarantees on performance measures. Here, we present two extensions: the merge element which combine several flows into one, and some Active Queue Management (AQM) mechanisms. This extension allows to study networks with a feed-forward topology.


Performance evaluation Histograms Stochastic bounds Queue management 



This work was partially supported by grant ANR MARMOTE (ANR-12-MONU-0019) and DIGITEO.


  1. 1.
    Aït-Salaht, F., Castel Taleb, H., Fourneau, J.M., Mautor, T., Pekergin, N.: Smoothing the input process in a batch queue. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) ISCIS 2015. Lecture Notes in Electrical Engineering, vol. 363, pp. 223–232. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Aït-Salaht, F., Castel Taleb, H., Fourneau, J.M., Pekergin, N.: A bounding histogram approach for network performance analysis. In: HPCC, China (2013)Google Scholar
  3. 3.
    Aït-Salaht, F., Castel-Taleb, H., Fourneau, J.-M., Pekergin, N.: Stochastic bounds and histograms for network performance analysis. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 13–27. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Aït-Salaht, F., Cohen, J., Castel-Taleb, H., Fourneau, J.M., Pekergin, N.: Accuracy vs. complexity: the stochastic bound approach. In: 11th International Workshop on Disrete Event Systems, pp. 343–348 (2012)Google Scholar
  5. 5.
    Hernández-Orallo, E., Vila-Carbó, J.: Network performance analysis based on histogram workload models. In: MASCOTS, pp. 209–216, 2007Google Scholar
  6. 6.
    Hernández-Orallo, E., Vila-Carbó, J.: Web server performance analysis using histogram workload models. Computer Networks 53(15), 2727–2739 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hernández-Orallo, E., Vila-Carbó, J.: Network queue and loss analysis using histogram-based traffic models. Comput. Commun. 33(2), 190–201 (2010)CrossRefGoogle Scholar
  8. 8.
    Kleinrock, L.: Queueing Systems volume I: Theory. Wiley, Hoboken (1975)zbMATHGoogle Scholar
  9. 9.
    Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002)zbMATHGoogle Scholar
  10. 10.
    Schleyer, M.: Discrete time analysis of batch processes in material flow systems. Wissenschaftliche Berichte des Institutes für Fördertechnik und Logistiksysteme des Karlsruher Instituts für Technologie. Univ.-Verlag Karlsruhe (2007)Google Scholar
  11. 11.
    Cho Sony, K., Cho, K.: Traffic data repository at the wide project. In: Proceedings of USENIX 2000 Annual Technical Conference on FREENIX Track, pp. 263–270 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Farah Aït-Salaht
    • 1
    Email author
  • Hind Castel-Taleb
    • 2
  • Jean-Michel Fourneau
    • 3
  • Nihal Pekergin
    • 4
  1. 1.LIP6, Pierre et Marie Curie University, UMR7606ParisFrance
  2. 2.SAMOVAR, UMR 5157, Télécom Sud ParisEvryFrance
  3. 3.DAVID, Versailles St-Quentin UniversityVersaillesFrance
  4. 4.LACL, Paris Est-Créteil UniversityCréteilFrance

Personalised recommendations