Cell Designs for In Situ and Operando Studies

  • Dmitry E. Doronkin
  • Henning Lichtenberg
  • Jan-Dierk Grunwaldt
Chapter

Abstract

The design of appropriate spectroscopic cells for in situ and operando XAFS studies of heterogeneous catalysts has been a very active field during the past decades as the investigation of catalysts at work has become a powerful approach to improve the activity and selectivity of catalysts in a rational manner. This chapter reviews criteria for choosing the appropriate cell design and underlines its significance using several examples of in situ and operando cells for studying heterogeneous catalysts, sensors, and electrocatalysts and for deriving structure-performance relationships. This strongly contributes to a better understanding of the dynamics of functional materials and their knowledge-based improvement.

References

  1. 1.
    Weckhuysen BM (2003) Determining the active site in a catalytic process: operando spectroscopy is more than a buzzword. Phys Chem Chem Phys 5:4351. doi:10.1039/b309650p CrossRefGoogle Scholar
  2. 2.
    Topsøe H (2003) Developments in operando studies and in situ characterization of heterogeneous catalysts. J Catal 216:155–164. doi:10.1016/S0021-9517(02)00133-1 CrossRefGoogle Scholar
  3. 3.
    Grunwaldt J-D, Clausen BS (2002) Combining XRD and EXAFS with on-line catalytic studies for in situ characterization of catalysts. Top Catal 18:37–43. doi:10.1023/A:1013838428305 CrossRefGoogle Scholar
  4. 4.
    Bañares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77. doi:10.1016/j.cattod.2004.12.017 CrossRefGoogle Scholar
  5. 5.
    Lytle FW, Wei PSP, Greegor RB et al (1979) Effect of chemical environment on magnitude of x‐ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and catalysts. J Chem Phys 70:4849–4855. doi:10.1063/1.437376 CrossRefGoogle Scholar
  6. 6.
    Grunwaldt J-D, van Vegten N, Baiker A, van Beek W (2009) Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X-ray absorption and Raman spectroscopy. J Phys Conf Ser 190:012160. doi:10.1088/1742-6596/190/1/012160 CrossRefGoogle Scholar
  7. 7.
    Hannemann S, Casapu M, Grunwaldt J-D et al (2007) A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase. J Synchrotron Radiat 14:345–354. doi:10.1107/S0909049507024466 CrossRefGoogle Scholar
  8. 8.
    Grunwaldt J-D, Ramin M, Rohr M et al (2005) High pressure in situ x-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface. Rev Sci Instrum 76:054104. doi:10.1063/1.1914787 CrossRefGoogle Scholar
  9. 9.
    La Fontaine C, Barthe L, Rochet A, Briois V (2013) X-ray absorption spectroscopy and heterogeneous catalysis: performances at the SOLEIL’s SAMBA beamline. Catal Today 205:148–158. doi:10.1016/j.cattod.2012.09.032 CrossRefGoogle Scholar
  10. 10.
    The EXAFS Company. http://www.exafsco.com. Accessed 11 Aug 2016
  11. 11.
    Synchrotron Catalysis Consortium (SCC). http://www.yu.edu/scc. Accessed 11 Aug 2016
  12. 12.
    Abdala PM, Safonova OV, Wiker G et al (2012) Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines. Chimia 66:699–705. doi:10.2533/chimia.2012.699 CrossRefGoogle Scholar
  13. 13.
    van Beek W, Safonova OV, Wiker G, Emerich H (2011) SNBL, a dedicated beamline for combined in situ X-ray diffraction, X-ray absorption and Raman scattering experiments. Phase Transit 84:726–732. doi:10.1080/01411594.2010.549944 CrossRefGoogle Scholar
  14. 14.
    Martis V, Beale AM, Detollenaere D et al (2014) A high-pressure and controlled-flow gas system for catalysis research. J Synchrotron Radiat 21:462–463. doi:10.1107/S1600577513031937 CrossRefGoogle Scholar
  15. 15.
    Grunwaldt J-D, Hannemann S, Göttlicher J et al (2005) X-ray absorption spectroscopy on heterogeneous catalysts at the new XAS beamline at ANKA. Phys Scr 2005:769. doi:10.1238/Physica.Topical.115a00769 CrossRefGoogle Scholar
  16. 16.
    Grunwaldt J-D, Caravati M, Hannemann S, Baiker A (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6:3037–3047. doi:10.1039/B403071K CrossRefGoogle Scholar
  17. 17.
    Bare SR, Ressler T (2009) Chapter 6. Characterization of catalysts in reactive atmospheres by X‐ray absorption spectroscopy. In: Gates BC, Knözinger H (eds) Advances in Catalysis, vol 52. Academic Press, San Diego, pp 339–465Google Scholar
  18. 18.
    Lesage T, Verrier C, Bazin P et al (2003) Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al2O3 catalyst by operando FT-IR spectroscopy. Phys Chem Chem Phys 5:4435–4440. doi:10.1039/b305874n CrossRefGoogle Scholar
  19. 19.
    Clausen BS, Topsøe H (1991) In situ high pressure, high temperature XAFS studies of Cu-based catalysts during methanol synthesis. Catal Today 9:189–196. doi:10.1016/0920-5861(91)85023-2 CrossRefGoogle Scholar
  20. 20.
    Sankar G, Wright PA, Natarajan S et al (1993) Combined QuEXAFS-XRD: a new technique in high-temperature materials chemistry; an illustrative in situ study of the zinc oxide-enhanced solid-state production of cordierite from a precursor zeolite. J Phys Chem 97:9550–9554. doi:10.1021/j100140a002 CrossRefGoogle Scholar
  21. 21.
    Bazin D, Triconnet A, Moureaux P (1995) An Exafs characterisation of the highly dispersed bimetallic platinum-palladium catalytic system. Nucl Instrum Methods Phys Res B 97:41–43. doi:10.1016/0168-583X(94)00713-6 CrossRefGoogle Scholar
  22. 22.
    Grunwaldt J-D, Lützenkirchen-Hecht D, Richwin M et al (2001) Piezo X-ray absorption spectroscopy for the investigation of solid-state transformations in the millisecond range. J Phys Chem B 105:5161–5168. doi:10.1021/jp010092u CrossRefGoogle Scholar
  23. 23.
    Newton MA, Burnaby DG, Dent AJ et al (2001) Simultaneous determination of structural and kinetic parameters characterizing the interconversion of highly dispersed species: the interaction of NO with RhI(CO)2/γ-Al2O3. J Phys Chem A 105:5965–5970. doi:10.1021/jp011621x CrossRefGoogle Scholar
  24. 24.
    Levenspiel O (1972) Chemical reaction engineering. Wiley, New YorkGoogle Scholar
  25. 25.
    Grunwaldt J-D, Baiker A (2006) Time-resolved and operando XAS Studies on heterogeneous catalysts – from the gas phase towards reactions in supercritical fluids. In: Hedman B, Pianetta P (eds). AIP Conf. Proc. Stanford, California, p 597Google Scholar
  26. 26.
  27. 27.
    Tsakoumis NE, Voronov A, Rønning M et al (2012) Fischer–Tropsch synthesis: an XAS/XRPD combined in situ study from catalyst activation to deactivation. J Catal 291:138–148. doi:10.1016/j.jcat.2012.04.018 CrossRefGoogle Scholar
  28. 28.
    Oxford Instruments. http://www.oxford-instruments.com. Accessed 11 Aug 2016
  29. 29.
    FMB Oxford. http://www.fmb-oxford.com. Accessed 11 Aug 2016
  30. 30.
    Tinnemans SJ, Mesu JG, Kervinen K et al (2006) Combining operando techniques in one spectroscopic-reaction cell: new opportunities for elucidating the active site and related reaction mechanism in catalysis. Catal Today 113:3–15. doi:10.1016/j.cattod.2005.11.076 CrossRefGoogle Scholar
  31. 31.
    Chiarello GL, Dozzi MV, Scavini M et al (2014) One step flame-made fluorinated Pt/TiO2 photocatalysts for hydrogen production. Appl Catal B 160–161:144–151. doi:10.1016/j.apcatb.2014.05.006 CrossRefGoogle Scholar
  32. 32.
    Grunwaldt J-D, Hannemann S, Schroer CG, Baiker A (2006) 2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. J Phys Chem B 110:8674–8680. doi:10.1021/jp060371n CrossRefGoogle Scholar
  33. 33.
    Gänzler AM, Casapu M, Boubnov A et al (2015) Operando spatially and time-resolved X-ray absorption spectroscopy and infrared thermography during oscillatory CO oxidation. J Catal 328:216–224. doi:10.1016/j.jcat.2015.01.002 CrossRefGoogle Scholar
  34. 34.
    Boubnov A, Carvalho HWP, Doronkin DE et al (2014) Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core x-ray emission spectroscopy. J Am Chem Soc 136:13006–13015. doi:10.1021/ja5062505 CrossRefGoogle Scholar
  35. 35.
    Doronkin DE, Casapu M, Günter T et al (2014) Operando spatially- and time-resolved XAS study on zeolite catalysts for selective catalytic reduction of NOx by NH3. J Phys Chem C 118:10204–10212. doi:10.1021/jp5028433 CrossRefGoogle Scholar
  36. 36.
    Grunwaldt J-D, Kimmerle B, Hannemann S et al (2007) Parallel structural screening of solid materials. J Mater Chem 17:2603. doi:10.1039/b705334g CrossRefGoogle Scholar
  37. 37.
    Grunwaldt J-D (2009) Shining X-rays on catalysts at work. J Phys Conf Ser 190:012151. doi:10.1088/1742-6596/190/1/012151 CrossRefGoogle Scholar
  38. 38.
    Bare SR, Yang N, Kelly SD et al (2007) Design and operation of a high pressure reaction cell for in situ X-ray absorption spectroscopy. Catal Today 126:18–26. doi:10.1016/j.cattod.2006.10.007 CrossRefGoogle Scholar
  39. 39.
    Beryllium Products (Materion). http://materion.com/Products/Beryllium.aspx. Accessed 11 Aug 2016
  40. 40.
    Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Low absorption vitreous carbon reactors for operandoXAS: a case study on Cu/Zeolites for selective catalytic reduction of NOx by NH3. Phys Chem Chem Phys 14:2229–2238. doi:10.1039/C1CP22992C CrossRefGoogle Scholar
  41. 41.
    Grunwaldt J-D, Baiker A (2005) In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Phys Chem Chem Phys 7:3526–3539. doi:10.1039/B509667G CrossRefGoogle Scholar
  42. 42.
    Grunwaldt J-D, Wandeler R, Baiker A (2003) Supercritical fluids in catalysis: opportunities of in situ spectroscopic studies and monitoring phase behavior. Catal Rev 45:1–96. doi:10.1081/CR-120015738 CrossRefGoogle Scholar
  43. 43.
    Michailovski A, Grunwaldt J-D, Baiker A et al (2005) Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques. Angew Chem Int Ed 44:5643–5647. doi:10.1002/anie.200500514 CrossRefGoogle Scholar
  44. 44.
    Koziej D, Rossell MD, Ludi B et al (2011) Interplay between size and crystal structure of molybdenum dioxide nanoparticles-synthesis, growth mechanism, and electrochemical performance. Small 7:377–387. doi:10.1002/smll.201001606 CrossRefGoogle Scholar
  45. 45.
    Ramin M, Grunwaldt J-D, Baiker A (2005) Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. J Catal 234:256–267. doi:10.1016/j.jcat.2005.06.020 CrossRefGoogle Scholar
  46. 46.
    Reimann S, Stötzel J, Frahm R et al (2011) Identification of the active species generated from supported Pd catalysts in Heck reactions: an in situ quick scanning EXAFS investigation. J Am Chem Soc 133:3921–3930. doi:10.1021/ja108636u CrossRefGoogle Scholar
  47. 47.
    Grunwaldt J-D, Hübner M, Koziej D et al (2013) The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors. J Phys Conf Ser 430:012078. doi:10.1088/1742-6596/430/1/012078 CrossRefGoogle Scholar
  48. 48.
    Koziej D, Hübner M, Barsan N et al (2009) Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys Chem Chem Phys 11:8620. doi:10.1039/b906829e CrossRefGoogle Scholar
  49. 49.
    Tada M, Murata S, Asakoka T et al (2007) In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew Chem Int Ed 46:4310–4315. doi:10.1002/anie.200604732 CrossRefGoogle Scholar
  50. 50.
    Principi E, Witkowska A, Dsoke S et al (2009) An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells. Phys Chem Chem Phys 11:9987. doi:10.1039/b915086b CrossRefGoogle Scholar
  51. 51.
    Villevieille C, Sasaki T, Novák P (2014) Novel electrochemical cell designed for operando techniques and impedance studies. RSC Adv 4:6782. doi:10.1039/c3ra46184j CrossRefGoogle Scholar
  52. 52.
    Roth C, Martz N, Buhrmester T et al (2002) In-situ XAFS fuel cell measurements of a carbon-supported Pt–Ru anode electrocatalyst in hydrogen and direct methanol operation. Phys Chem Chem Phys 4:3555–3557. doi:10.1039/b204293b CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Dmitry E. Doronkin
    • 1
  • Henning Lichtenberg
    • 1
  • Jan-Dierk Grunwaldt
    • 1
  1. 1.Institute for Chemical Technology and Polymer Chemistry (ITCP) and Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations