Operando EXAFS and XANES of Catalytic Solids and Related Materials

  • Gareth T. Whiting
  • Florian Meirer
  • Bert M. Weckhuysen


The continuous improvement of X-ray sources, optics, and detectors since the start of the twenty first century has paved the way for unprecedented studies of functional materials at work. Studying these typically highly complex materials while they are working requires a sophisticated combination of analysis techniques that can provide chemical information about the ongoing processes at multiple time- and/or length scales. This makes X-rays an excellent probe for such studies, as they are (usually) non-destructive, can be used for relatively fast processes (0.01–2 s), and can operate in harsh environments, for example under high pressure or temperature. In order to link the (spatio-)temporal chemical information obtained by X-ray absorption spectroscopy (XAS) to the task performed by the functional material, it is necessary to collect additional complementary information about the running process (performance). It is this simultaneous measurement together with a combined data analysis that defines “operando” studies.


Membrane Electrode Assembly Tropsch Synthesis European Synchrotron Radiation Facility Propane Dehydrogenation Benzyl Alcohol Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weckhuysen BM (2003) Determining the active site in a catalytic process: operando spectroscopy is more than a buzzword. Phys Chem Chem Phys 5:4351–4360CrossRefGoogle Scholar
  2. 2.
    Bañares MA (2005) Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal Today 100:71–77CrossRefGoogle Scholar
  3. 3.
    Mesu JG, Beale AM, de Groot FMF, Weckhuysen BM (2006) Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J Phys Chem B 110:17671–17677CrossRefGoogle Scholar
  4. 4.
    Weckhuysen BM (2002) Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem Commun 97–110Google Scholar
  5. 5.
    Bañares MA, Guerrero-Pérez MO, Fierro JLG, Cortez GG (2002) Raman spectroscopy during catalytic operations with on-line activity measurement (operando spectroscopy): a method for understanding the active centres of cations supported on porous. J Mater Chem 12:3337–3342CrossRefGoogle Scholar
  6. 6.
    Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Ed 48:4910–4943CrossRefGoogle Scholar
  7. 7.
    Buurmans ILC, Weckhuysen BM (2012) Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nat Chem 4:873–886CrossRefGoogle Scholar
  8. 8.
    Beale AM, Jacques SDM, Weckhuysen BM (2010) Chemical imaging of catalytic solids with synchrotron radiation. Chem Soc Rev 39:4656–4672CrossRefGoogle Scholar
  9. 9.
    Grunwaldt J-D, Schroer CG (2010) Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem Soc Rev 39:4741–4753CrossRefGoogle Scholar
  10. 10.
    Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39:4754–4766CrossRefGoogle Scholar
  11. 11.
    Newton MA, van Beek W (2010) Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem Soc Rev 39:4845–4863CrossRefGoogle Scholar
  12. 12.
    Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113:1736–1850CrossRefGoogle Scholar
  13. 13.
    Andrews JC, Weckhuysen BM (2013) Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chemphyschem 14:3655–3666CrossRefGoogle Scholar
  14. 14.
    Davis BH, Occelli ML (eds) (2007) Fischer-tropsch synthesis, catalysts and catalysis, Studies in Surface Science and Catalysis, 163, Elsevier, OxfordGoogle Scholar
  15. 15.
    Remans TJ, Jenzer G, Hoek A (2008) Gas-to-Liquids. In: Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, WeinheimGoogle Scholar
  16. 16.
    Moodley DJ, van de Loosdrecht J, Saib AM, Overett MJ, Datye AK, Niemantsverdriet JW (2009) Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Appl Catal A Gen 354:102–110CrossRefGoogle Scholar
  17. 17.
    Sirijaruphan A, Horváth A, Goodwin JG Jr, Oukaci R (2003) Cobalt aluminate formation in alumina-supported cobalt catalysts: effects of cobalt reduction state and water vapor. Catal Lett 91:89–94CrossRefGoogle Scholar
  18. 18.
    Bertole C, Mims CA, Kiss G (2002) The effect of water on the cobalt-catalyzed Fischer–Tropsch synthesis. J Catal 210:84–96CrossRefGoogle Scholar
  19. 19.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A Gen 233:263–281CrossRefGoogle Scholar
  20. 20.
    Tavasoli A, Abbaslou RMM, Trepanier M, Dalai AK (2008) Fischer–Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Appl Catal A Gen 345:134–142CrossRefGoogle Scholar
  21. 21.
    Tsakoumis NE, Rønning M, Borg Ø, Rytter E, Holmen A (2010) Deactivation of cobalt based Fischer–Tropsch catalysts: a review. Catal Today 154:162–182CrossRefGoogle Scholar
  22. 22.
    Saib AM, Moodley DJ, Ciobîcă IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal Today 154:271–282CrossRefGoogle Scholar
  23. 23.
    Rochet A, Moizan V, Diehl F, Pichon C, Briois V (2013) Quick-XAS and Raman operando characterisation of a cobalt alumina-supported catalyst under realistic Fischer–Tropsch reaction conditions. Catal Today 205:94–100CrossRefGoogle Scholar
  24. 24.
    Kawai T, Chun W-J, Asakura K, Koike Y, Nomura M, Bando KK, Oyama ST, Sumiya H (2008) Design of a high-temperature and high-pressure liquid flow cell for x-ray absorption fine structure measurements under catalytic reaction conditions. Rev Sci Instrum 79:014101CrossRefGoogle Scholar
  25. 25.
    Rochet A, Moizan V, Briois V, Pichon C (2011) Design of a high-pressure and high-temperature cell for operando X-ray absorption spectroscopy in heterogeneous catalysis. Diam Light Source Proc 1:e130CrossRefGoogle Scholar
  26. 26.
    Tsakoumis NE, Voronov A, Rønning M, van Beek W, Borg Ø, Rytter E, Holmen A (2012) Fischer–Tropsch synthesis: an XAS/XRPD combined in situ study from catalyst activation to deactivation. J Catal 291:138–148CrossRefGoogle Scholar
  27. 27.
    De Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, Weckhuysen BM (2010) Stability and reactivity of ϵ − χ − θ iron carbide catalyst phases in Fischer − Tropsch synthesis: controlling μ C. J Am Chem Soc 132:14928–14941CrossRefGoogle Scholar
  28. 28.
    Rochet A, Moizan V, Pichon C, Diehl F, Berliet A, Briois V (2011) In situ and operando structural characterisation of a Fischer–Tropsch supported cobalt catalyst. Catal Today 171:186–191CrossRefGoogle Scholar
  29. 29.
    Cats KH, Gonzalez-Jimenez ID, Liu Y, Nelson J, van Campen D, Meirer F, van der Eerden AMJ, de Groot FMF, Andrews JC, Weckhuysen BM (2013) X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work. Chem Commun 49:4622–4624CrossRefGoogle Scholar
  30. 30.
    Gonzalez-Jimenez ID, Cats K, Davidian T, Ruitenbeek M, Meirer F, Liu Y, Nelson J, Andrews JC, Pianetta P, de Groot FMF, Weckhuysen BM (2012) Hard X-ray nanotomography of catalytic solids at work. Angew Chem Int Ed 51:11986–11990CrossRefGoogle Scholar
  31. 31.
    Choudhary VR, Dumbre DK, Bhargava SK (2009) Oxidation of benzyl alcohol to benzaldehyde by tert -butyl hydroperoxide over nanogold supported on TiO2 and other transition and rare-earth metal oxides. Ind Eng Chem Res 48:9471–9478CrossRefGoogle Scholar
  32. 32.
    Liotta L, Venezia A, Deganello G, Longo A, Martorana A, Schay Z, Guczi L (2001) Liquid phase selective oxidation of benzyl alcohol over Pd–Ag catalysts supported on pumice. Catal Today 66:271–276CrossRefGoogle Scholar
  33. 33.
    Schultz MJ, Park CC, Sigman MS (2002) A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature. Chem Commun 24:3034–3035CrossRefGoogle Scholar
  34. 34.
    Ming-Lin G, Hui-Zhen L (2007) Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over tetra-alkylpyridinium octamolybdate catalysts. Green Chem 9:421–423CrossRefGoogle Scholar
  35. 35.
    Su Y, Wang L-C, Liu Y-M, Cao Y, He H-Y, Fan K-N (2007) Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides. Catal Commun 8:2181–2185CrossRefGoogle Scholar
  36. 36.
    Choudhary VR, Dhar A, Jana P, Jha R, Uphade BS (2005) A green process for chlorine-free benzaldehyde from the solvent-free oxidation of benzyl alcohol with molecular oxygen over a supported nano-size gold catalyst. Green Chem 7:768–770CrossRefGoogle Scholar
  37. 37.
    Caravati M, Grunwaldt J-D, Baiker A (2007) Comparative in situ XAS investigations during aerobic oxidation of alcohols over ruthenium, platinum and palladium catalysts in supercritical CO2. Catal Today 126:27–36CrossRefGoogle Scholar
  38. 38.
    Mällat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058CrossRefGoogle Scholar
  39. 39.
    Mondelli C, Ferri D, Grunwaldt J-D, Krumeich F, Mangold S, Psaro R, Baiker A (2007) Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3. J Catal 252:77–87CrossRefGoogle Scholar
  40. 40.
    Besson M, Gallezot P (2000) Selective oxidation of alcohols and aldehydes on metal catalysts. Catal Today 57:127–141CrossRefGoogle Scholar
  41. 41.
    Grunwaldt J-D, Caravati M, Ramin M, Baiker A (2003) Probing active sites during palladium-catalyzed alcohol oxidation in “supercritical” carbon dioxide. Catal Lett 90:221–229CrossRefGoogle Scholar
  42. 42.
    Souto RM, Rodríguez JL, Pastor E, Iwasita T (2000) Spectroscopic investigation of the adsorbates of benzyl alcohol on palladium. Langmuir 16:8456–8462CrossRefGoogle Scholar
  43. 43.
    Markusse A, Kuster BF, Schouten JC (2001) Platinum catalysed aqueous methyl α-d-glucopyranoside oxidation in a multiphase redox-cycle reactor. Catal Today 66:191–197CrossRefGoogle Scholar
  44. 44.
    Gangwal VR, van Wachem BGM, Kuster BFM, Schouten JC (2002) Platinum catalysed aqueous alcohol oxidation: model-based investigation of reaction conditions and catalyst design. Chem Eng Sci 57:5051–5063CrossRefGoogle Scholar
  45. 45.
    Sanfilippo D (2000) Dehydrogenation of paraffins; key technology for petrochemicals and fuels. CatTech 4:56–73CrossRefGoogle Scholar
  46. 46.
    Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216CrossRefGoogle Scholar
  47. 47.
    Mitchell PC, Wass S (2002) Propane dehydrogenation over molybdenum hydrotalcite catalysts. Appl Catal A Gen 225:153–165CrossRefGoogle Scholar
  48. 48.
    Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem Rev 114:10613–10653CrossRefGoogle Scholar
  49. 49.
    Santhosh KM, Hammer N, Rønning M, Holmen A, Chen D, Walmsley JC, Oye G (2009) The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study. J Catal 261:116–128CrossRefGoogle Scholar
  50. 50.
    Beale AM, van der Eerden AMJ, Kervinen K, Newton MA, Weckhuysen BM (2005) Adding a third dimension to operando spectroscopy: a combined UV-Vis, Raman and XAFS setup to study heterogeneous catalysts under working conditions. Chem Commun 3015–3017Google Scholar
  51. 51.
    Iglesias-Juez A, Beale AM, Maaijen K, Weng TC, Glatzel P, Weckhuysen BM (2010) A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. J Catal 276:268–279CrossRefGoogle Scholar
  52. 52.
    Barchasz C, Molton F, Duboc C, Leprêtre J-C, Patoux S, Alloin F (2012) Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. Anal Chem 84:3973–3980CrossRefGoogle Scholar
  53. 53.
    Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) Lithium sulfur battery: oxidation/reduction mechanisms of polysulfides in THF solutions. J Electrochem Soc 135:1045–1048CrossRefGoogle Scholar
  54. 54.
    Cuisinier M, Cabelguen P-E, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar LF (2013) Sulfur speciation in Li–S batteries determined by operando X-ray absorption spectroscopy. J Phys Chem Lett 4:3227–3232CrossRefGoogle Scholar
  55. 55.
    Koziej D, Hübner M, Barsan N, Weimar U, Sikora M, Grunwaldt J-D (2009) Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors. Phys Chem Chem Phys 11:8620–8625CrossRefGoogle Scholar
  56. 56.
    Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839CrossRefGoogle Scholar
  57. 57.
    Tsud N, Johánek V, Stará I, Veltruská K, Matolın V (2001) XPS, ISS and TPD study of Pd–Sn interactions on Pd–SnOx systems. Thin Solid Films 391:204–208CrossRefGoogle Scholar
  58. 58.
    Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2001) Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol–gel thin film. Sens Actuators B Chem 77:503–511CrossRefGoogle Scholar
  59. 59.
    Mädler L, Sahm T, Gurlo A, Grunwaldt J-D, Barsan N, Weimar U, Pratsinis SE (2006) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8:783–796CrossRefGoogle Scholar
  60. 60.
    Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726CrossRefGoogle Scholar
  61. 61.
    Jacobson MZ, Colella WG, Golden DM (2005) Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308:1901–1905CrossRefGoogle Scholar
  62. 62.
    Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  63. 63.
    Ishiguro N, Saida T, Uruga T, Nagamatsu S, Sekizawa O, Nitta K, Yamamoto T, Ohkoshi S, Iwasawa Y, Yokoyama T, Tada M (2012) Operando time-resolved X-ray absorption fine structure study for surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell during voltage-operating processes. ACS Catal 2:1319–1330CrossRefGoogle Scholar
  64. 64.
    Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew Chem Int Ed 46:4310–4315CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Gareth T. Whiting
    • 1
  • Florian Meirer
    • 1
  • Bert M. Weckhuysen
    • 1
  1. 1.Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations