Simple or Complex Bodies? Trade-offs in Exploiting Body Morphology for Control

  • Matej HoffmannEmail author
  • Vincent C. Müller
Part of the Studies in Applied Philosophy, Epistemology and Rational Ethics book series (SAPERE, volume 28)


Engineers fine-tune the design of robot bodies for control purposes; however, a methodology or set of tools is largely absent, and optimization of morphology (shape, material properties of robot bodies, etc.) is lagging behind the development of controllers. This has become even more prominent with the advent of compliant, deformable or ‘soft’ bodies. These carry substantial potential regarding their exploitation for control—sometimes referred to as ‘morphological computation’. In this article, we briefly review different notions of computation by physical systems and propose the dynamical systems framework as the most useful in the context of describing and eventually designing the interactions of controllers and bodies. Then, we look at the pros and cons of simple versus complex bodies, critically reviewing the attractive notion of ‘soft’ bodies automatically taking over control tasks. We address another key dimension of the design space—whether model-based control should be used and to what extent it is feasible to develop faithful models for different morphologies.



M.H. was supported by the Czech Science Foundation under Project GA17-15697Y and by the Marie Curie Intra European Fellowship iCub Body Schema (625727) within the 7th European Community Framework Programme. M.H. also thanks Juan Pablo Carbajal for fruitful discussions and pointers to literature. Both authors thank the EUCogIII project (FP7-ICT 269981) for making us talk to each other.


  1. 1.
    Project LOCOMORPH. FP7-ICT-231688Google Scholar
  2. 2.
    Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20 –30 (2008)CrossRefGoogle Scholar
  3. 3.
    Aström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press (2008)Google Scholar
  4. 4.
    Bhounsule, P.A., Cortell, J., Grewal, A., Hendriksen, B., Daniël Karssen, J.G., Paul, C., Ruina, A.: Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge. Int. J. Robot. Res. 33(10), 1305–1321 (2014)CrossRefGoogle Scholar
  5. 5.
    Blickhan, R., Seyfarth, A., Geyer, H., Grimmer, S., Wagner, H., Guenther, M.: Intelligence by mechanics. Phil. Trans. R. Soc. Lond. A 365, 199–220 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)CrossRefGoogle Scholar
  7. 7.
    Brodbeck, L., Hauser, S., Iida, F.: Morphological evolution of physical robots through model-free phenotype development. PloS one 10(6), e0128444 (2015)CrossRefGoogle Scholar
  8. 8.
    Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: From the cover: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. U.S.A. 107(44), 18809–18814 (2010)CrossRefGoogle Scholar
  9. 9.
    Caluwaerts, K., D’Haene, M., Verstraeten, D., Schrauwen, B.: Locomotion without a brain: physical reservoir computing in tensegrity structures. Artificial Life 19(1), 35–66 (2013)CrossRefGoogle Scholar
  10. 10.
    Carbajal, J.P. : Harnessing nonlinearities: behavior generation from natural dynamics. PhD thesis, University of Zurich (2012)Google Scholar
  11. 11.
    Crutchfield, J.P., Ditto, W.L., Sinha, S.: Introduction to focus issue: intrinsic and designed computation: information processing in dynamical systems—beyond the digital hegemony. Chaos 20(3), 037101_1–037101_6 (2010)Google Scholar
  12. 12.
    Emami-Naeini, A., Franklin, G.F., Powell, J.D.: Feedback Control of Dynamic Systems. Prentice Hall (2002)Google Scholar
  13. 13.
    Fresco, N.: Physical Computation and Cognitive Science. Springer (2014)Google Scholar
  14. 14.
    Füchslin, R.M., Dzyakanchuk, A., Flumini, D., Hauser, H., Hunt, K.J., Luchsinger, R.H., Reller, B., Scheidegger, S., Walker, R.: Morphological computation and morphological control: steps towards a formal theory and applications. Artificial Life 19(1), 9–34 (2013)CrossRefGoogle Scholar
  15. 15.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hauser, H., Ijspeert, A.J., Füchslin, R.M., Pfeifer, R., Maass, W.: The role of feedback in morphological computation with compliant bodies. Biol. Cybern. 106, 595–613 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hermans, M., Schrauwen, B., Bienstman, P., Dambre, J.: Automated design of complex dynamic systems. PLOS ONE 9(1), e86696 (2014)CrossRefGoogle Scholar
  18. 18.
    Hoffmann, M., Assaf, D., Pfeifer, R.: A tutorial on embodiment (2011).
  19. 19.
    Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: animal and robotic case studies. In: The Implications of Embodiment: Cognition and Communication, pp. 31–58. Exeter: Imprint Academic (2011)Google Scholar
  20. 20.
    Hoffmann, M., Müller, V.C.: Trade-offs in exploiting body morphology for control: from simple bodies and model-based control to complex bodies with model-free distributed control schemes. In: Hauser, H., Füchslin, R.M., Pfeifer, R. (eds.) E-book on Opinions and Outlooks on Morphological Computation, chap. 17, pp. 185–194 (2014)Google Scholar
  21. 21.
    Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses and challenges. SIAM Rev. 48(2), 207–304 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)CrossRefGoogle Scholar
  23. 23.
    Iida, F., Gómez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings of the 12th International Conferences on Advanced Robotics (ICAR05), pp. 229–235, Seattle, U.S.A. (2005)Google Scholar
  24. 24.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Advances in Artificial Life, pp. 704–720. Springer (1995)CrossRefGoogle Scholar
  25. 25.
    Kirk, D.: Optimal Control Theory: An Introduction. Dover Publications (2004)Google Scholar
  26. 26.
    Klyubin, A.S., Polani, D., Nehaniv, C.L.: All else being equal be empowered. In: Advances in Artificial Life, pp. 744–753. Springer (2005)CrossRefGoogle Scholar
  27. 27.
    Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)CrossRefGoogle Scholar
  29. 29.
    Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)CrossRefGoogle Scholar
  30. 30.
    Lipson, H.: Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot. 1, 21–27 (2013)CrossRefGoogle Scholar
  31. 31.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)CrossRefGoogle Scholar
  32. 32.
    McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation, computation, and communication. Science 347(6228), 1261689 (2015)CrossRefGoogle Scholar
  33. 33.
    McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)CrossRefGoogle Scholar
  34. 34.
    Moore, A., Ober-Blöbaum, S., Marsden, J.E.: Trajectory design combining invariant manifolds with discrete mechanics and optimal control. J. Guid. Control Dyn. 35(5), 1507–1525 (2012)CrossRefGoogle Scholar
  35. 35.
    Nakanishi, Y., Asano, Y., Kozuki, T., Mizoguchi, H., Motegi, Y., Osada, M., Shirai, T., Urata, J., Okada, K., Inaba, M.: Design concept of detail musculoskeletal humanoid Kenshiro—toward a real human body musculoskeletal simulator. In: 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2012, pp. 1–6. IEEE (2012)Google Scholar
  36. 36.
    Niiyama, R., Nagakubo, A., Kuniyoshi, Y.: Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: IEEE International Conference Robotics and Automation (ICRA), pp. 2546–2551. IEEE (2007)Google Scholar
  37. 37.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press Cambridge (2000)Google Scholar
  38. 38.
    Pekarek, D.N.: Variational methods for control and design of bipedal robot models. PhD thesis, California Institute of Technology (2010)Google Scholar
  39. 39.
    Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press, Cambridge, MA (2007)Google Scholar
  40. 40.
    Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55(11), 76–87 (2012)CrossRefGoogle Scholar
  41. 41.
    Pfeifer, R., Marques, H.G., Iida, F.: Soft robotics: the next generation of intelligent machines. In: Proceedings 23rd International Joint Conference on Artificial Intelligence, pp. 5–11. AAAI Press (2013)Google Scholar
  42. 42.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press (1999)Google Scholar
  43. 43.
    Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holland, O.: The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic systems. Int. J. Adv. Robot. Syst. 8(5), 143–155 (2011)CrossRefGoogle Scholar
  44. 44.
    Rieffel, J.A., Valero-Cuevas, F.J., Lipson, H.: Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion. J. R. Soc. Interface 7(45), 613–621 (2010)CrossRefGoogle Scholar
  45. 45.
    Rückert, E., Neumann, G.: Stochastic optimal control methods for investigating the power of morphological computation. Artificial Life 19, 115–131 (2013)CrossRefGoogle Scholar
  46. 46.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)CrossRefGoogle Scholar
  47. 47.
    Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)CrossRefGoogle Scholar
  48. 48.
    Trimmer, B.: A journal of soft robotics: why now? Soft Robot. 1, 1–4 (2013)Google Scholar
  49. 49.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)CrossRefGoogle Scholar
  50. 50.
    Wang M.Y.: A kinetoelastic formulation of compliant mechanism optimization. J. Mech. Robot. 1(2), 021011 (2009)CrossRefGoogle Scholar
  51. 51.
    Wittmeier, S., Alessandro, C., Bascarevic, N., Dalamagkidis, K., Devereux, D., Diamond, A., Jäntsch, M., Jovanovic, K., Knight, R., Marques, H.G., et al.: Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artificial life 19(1), 171–193 (2013)CrossRefGoogle Scholar
  52. 52.
    Zahedi, K., Ay, N.: Quantifying morphological computation. Entropy 15(5), 1887–1915 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Department of CyberneticsCzech Technical University in PraguePragueCzech Republic
  2. 2.iCub FacilityIstituto Italiano di TecnologiaGenoaItaly
  3. 3.Anatolia College/ACTPylaiaGreece
  4. 4.Department of Philosophy, IDEA CentreUniversity of LeedsLeedsUK

Personalised recommendations