Advertisement

Toward Physical Realizations of Thermodynamic Resource Theories

  • Nicole Yunger HalpernEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

“This is your arch-nemesis.” The thank-you slide of my resentation remained onscreen, and the question-and-answer session had begun.

Keywords

Quantum State Density Operator Gibbs State Resource Theory Trace Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I am grateful to Fernando Brandão, Lídia del Rio, Ian Durham, Manuel Endres, Tobias Fritz, Alexey Gorshkov, Christopher Jarzynski, David Jennings, Matteo Lostaglio, Evgeny Mozgunov, Varun Narasimhachar, Nelly Ng, John Preskill, Renato Renner, Dean Rickles, Jim Slinkman, Stephanie Wehner, and Mischa Woods for conversations and feedback. This research was supported by an IQIM Fellowship, NSF grant PHY-0803371, and a Virginia Gilloon Fellowship. The Institute for Quantum Information and Matter (IQIM) is an NSF Physics Frontiers Center supported by the Gordon and Betty Moore Foundation. Stephanie Wehner and QuTech offered hospitality at TU Delft during the preparation of this manuscript. I am grateful to Ian Durham and Dean Rickles for soliciting this paper. Finally, I thank that seminar participant for galvanizing this exploration.

References

  1. 1.
    Åberg, J.: Truly work-like work extraction via a single-shot analysis. Nat. Commun. 4, 1925 (2013)CrossRefGoogle Scholar
  2. 2.
    Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 15 (2014)CrossRefGoogle Scholar
  3. 3.
    Agarwal, G.S.: Quantum Optics. Cambridge U.P. (2013)Google Scholar
  4. 4.
    Alemany, A., Ritort, F.: Fluctuation theorems in small systems: extending thermodynamics to the nanoscale. Europhys. News 41, 27–30 (2010)CrossRefGoogle Scholar
  5. 5.
    Alhambra, Á.M., Oppenheim, J., Perry, C.: What is the probability of a thermodynamical transition?. ArXiv e-prints (2015)Google Scholar
  6. 6.
    An, S., Zhang, J.N., Um, M., Lv, D., Lu, Y., Zhang, J., Yin, Z.Q., Quan, H.T., Kim, K.: Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 11, 193–199 (2015)CrossRefGoogle Scholar
  7. 7.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W., Turner, P.S.: Degradation of a quantum reference frame. New J. Phys. 8, 4 (2006)CrossRefGoogle Scholar
  8. 8.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Modern Phys. 79, 2 (2007). http://dx.doi.org/10.1103/RevModPhys.79.555
  9. 9.
    Bérut, A., Petrosyan, A., Ciliberto, S.: Detailed Jarzynski equality applied to a logically irreversible procedure. Europhys. Lett. 103(6), 3275–3279 (2013)CrossRefGoogle Scholar
  10. 10.
    Blickle, V., Speck, T., Helden, L., Seifert, U., Bechinger, C.: Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Phys. Rev. Lett. 96, 7 (2006). http://link.aps.org/doi/10.1103/PhysRevLett.96.070603
  11. 11.
    Brandao, F.G.S.L., Datta, N.: One-shot rates for entanglement manipulation under non-entangling maps. ArXiv e-prints (2009)Google Scholar
  12. 12.
    Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 25 (2013)CrossRefGoogle Scholar
  13. 13.
    Brandão, F.G.S.L., Horodecki, M., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Nat. Acad. Sci. U.S.A. 112, 11 (2014)Google Scholar
  14. 14.
    Buscemi, F., Datta, N.: The quantum capacity of channels with arbitrarily correlated noise. ArXiv e-prints (2009)Google Scholar
  15. 15.
    Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58(7), 43–48 (2005)CrossRefGoogle Scholar
  16. 16.
    Campisi, M., Hänggi, P., Talkner, P.: Colloquium: quantum fluctuation relations: foundations and applications. Rev. Modern Phys. 83(3), 771–791 (2011)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D 26(8), 1817–1839 (1982)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Cheng, J., Sreelatha, S., Hou, R., Efremov, A., Liu, R., van der Maarel, J.R.C., Wang, Z.: Bipedal nanowalker by pure physical mechanisms. Phys. Rev. Lett. 109, 23 (2012)CrossRefGoogle Scholar
  19. 19.
    Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. ArXiv e-prints (2014)Google Scholar
  20. 20.
    Córcole, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015)Google Scholar
  21. 21.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2012)Google Scholar
  22. 22.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721–2726 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Czech, B., Hayden, P., Lashkari, N., Swingle, B.: The information theoretic interpretation of the length of a curve. ArXiv e-prints (2014)Google Scholar
  24. 24.
    Datta, N.: Min-and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Eddington, A.S.: The Nature of the Physical World. MacMillan (1929)Google Scholar
  26. 26.
    van Erven, T., Harremoës, P.: R’enyi divergence and kullback-leibler divergence. ArXiv e-prints (2012). http://adsabs.harvard.edu/abs/2012arXiv1206.2459V
  27. 27.
    Faucheux, L.P., Bourdieu, L.S., Kaplan, P.D., Libchaber, A.J.: Optical thermal ratchet. Phys. Rev. Lett. 74(9), 1504–1507 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. ArXiv e-prints (2015)Google Scholar
  29. 29.
    Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. ArXiv e-prints (2009)Google Scholar
  30. 30.
    Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Yunger Halpern, N.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Reports 538 0, 1–58 (2015). http://www.sciencedirect.com/science/article/pii/S037015731500229X
  31. 31.
    Harlow, D.: Jerusalem lectures on black holes and quantum information. ArXiv e-prints (2014)Google Scholar
  32. 32.
    Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4, 1–6 (2013)CrossRefGoogle Scholar
  33. 33.
    Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 6 (2003). http://dx.doi.org/10.1103/PhysRevA.67.062104
  34. 34.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Oppenheim, J., Sen(De), A., Sen, U.: Local information as a resource in distributed quantum systems. Phys. Rev. Lett. 90 (2003)Google Scholar
  35. 35.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Modern Phys. 81, 2 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Janzing, D., Wocjan, P., Zeier, R., Geiss, R., Beth, T.: Thermodynamic cost of reliability and low temperatures: tightening Landauer’s principle and the second law. Int. J. Theor. Phys. 39(12), 2717–2753 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56(5), 5018–5035 (1997)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Jarzynski, C., Quan, H.T., Rahav, S.: The quantum-classical correspondence principle for work distributions. ArXiv e-prints (2015)Google Scholar
  40. 40.
    Jennings, D.: Private communication (2015)Google Scholar
  41. 41.
    Joule, J.P.: On the existence of an equivalent relation between heat and the ordinary forms of mechanical power. Philos. Mag. xxvii, 205 (1845)Google Scholar
  42. 42.
    Jun, Y., Gavrilov, M., Bechhoefer, J.: High-precision test of landauer’s principle in a feedback trap. Phys. Rev. Lett. 113, 19 (2014)CrossRefGoogle Scholar
  43. 43.
    Korzekwa, K., Lostaglio, M., Oppenheim, J., Jennings, D.: The extraction of work from quantum coherence. ArXiv e-prints (2015)Google Scholar
  44. 44.
    Koski, J.V., Maisi, V.F., Pekola, J.P., Averin, D.V.: Experimental realization of a Szilárd engine with a single electron. Proc. Nat. Acad. Sci. U.S.A. 111 (2014)Google Scholar
  45. 45.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Liphardt, J., Dumont, S., Smith, S.B., Tinoco, I., Bustamante, C.: Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science (New York, N.Y.) 292(5574), 1832–1835 (2002)Google Scholar
  47. 47.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6 (2015)Google Scholar
  48. 48.
    Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 2 (2015)Google Scholar
  49. 49.
    Lostaglio, M.: Private communication (2015)Google Scholar
  50. 50.
    Malabarba, A.S.L., Short, A.J., Kammerlander, P.: Clock-driven quantum thermal engines. New J. Phys, 17 (2015)Google Scholar
  51. 51.
    Manosas, M., Mossa, A., Forns, N., Huguet, J., Ritort, F.: Dynamic force spectroscopy of DNA hairpins: II. Irreversibility and dissipation. J. Stat. Mech. Theory Exp. 2 (2009)Google Scholar
  52. 52.
    Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 3 (2013)CrossRefGoogle Scholar
  53. 53.
    Mazza, L., Rossini, D., Fazio, R., Endres, M.: Detecting two-site spin-entanglement in many-body systems with local particle-number fluctuations. New J. Phy. 171, 013015–013015 (2015). http://adsabs.harvard.edu/abs/2015NJPh...17a3015M. doi: 10.1088/1367-2630/17/1/013015
  54. 54.
    Navascués, M., García-Pintos, L.P.: Non-thermal quantum channels as a thermodynamical resource. ArXiv e-prints (2015)Google Scholar
  55. 55.
    Ng, N.: Private communication (2015)Google Scholar
  56. 56.
    Ng, N.H.Y., Mančinska, L., Cirstoiu, C., Eisert, J., Wehner, S.: Limits to catalysis in quantum thermodynamics. ArXiv e-prints (2014)Google Scholar
  57. 57.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2010)Google Scholar
  58. 58.
    Oppenheim, J.: In: Open-Problem Session. Presented at “Beyond i.i.d. in Information Theory 2015”. Banff, Canada (2015)Google Scholar
  59. 59.
    Pekola, J.P.: Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 2 (2015)CrossRefGoogle Scholar
  60. 60.
    Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Reeb, D., Wolf, M.M.: An improved Landauer principle with finite-size corrections. New J. Phys. 16, 10 (2014)CrossRefGoogle Scholar
  62. 62.
    Renner, R.: Security of Quantum Key Distribution. Ph.D. Thesis (2005)Google Scholar
  63. 63.
    Renner, R.: Private communication (2015)Google Scholar
  64. 64.
    Rényi, A.: On measures of entropy and information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)Google Scholar
  65. 65.
    Sagawa, T., Ueda, M.: Generalized jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 9 (2010)Google Scholar
  66. 66.
    Saira, O.P., Yoon, Y., Tanttu, T., Möttönen, M., Averin, D.V., Pekola, J.P.: Test of the jarzynski and crooks fluctuation relations in an electronic system. Phys. Rev. Lett. 109, 18 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.180601
  67. 67.
    Salek, S., Wiesner, K.: Fluctuations in single-shot \(\epsilon \)-deterministic work extraction. ArXiv e-prints (2015)Google Scholar
  68. 68.
    Schroeder, D.V.: An Introduction to Thermal Physics. Addison Wesley, San Francisco, CA (2000)Google Scholar
  69. 69.
    Skrzypczyk, P., Short, A.J., Popescu, S.: Extracting work from quantum systems. arXiv:1302.2811 (2013)
  70. 70.
    Skrzypczyk, P., Short, A.J., Popescu, S.: Extracting work from quantum systems. ArXiv e-prints (2013)Google Scholar
  71. 71.
    Szilard, L.: Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik 53(11–12), 840–856 (1929)ADSCrossRefzbMATHGoogle Scholar
  72. 72.
    Tajima, H., Hayashi, M.: Refined carnot’s theorem. asymptotics of thermodynamics with finite-size heat baths. ArXiv e-prints (2014)Google Scholar
  73. 73.
    Tomamichel, M.: A framework for non-asymptotic quantum information theory. arXiv:1203.2142 (2012)
  74. 74.
    Veitch, V., Hamed Mousavian, S.A., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16, 1 (2014)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Vinjanampathy, S., Anders, J.: Quantum thermodynamics. ArXiv e-prints (2015)Google Scholar
  76. 76.
    Wilming, H., Gallego, R., Eisert, J.: Second laws under control restrictions. ArXiv e-prints (2014)Google Scholar
  77. 77.
    Winter, A., Yang, D.: Operational resource theory of coherence. ArXiv e-prints (2015)Google Scholar
  78. 78.
    Woods, M.P., Ng, N., Wehner, S.: The maximum efficiency of nano heat engines depends on more than temperature. ArXiv e-prints (2015)Google Scholar
  79. 79.
    Yunger Halpern, N.: Beyond heat baths II: framework for generalized thermodynamic resource theories. ArXiv e-prints (2014)Google Scholar
  80. 80.
    Yunger Halpern, N., Renes, J.M.: Beyond heat baths: generalized resource theories for small-scale thermodynamics. Phys. Rev. E 93, 022126 (2016)Google Scholar
  81. 81.
    Yunger Halpern, N., Garner, A.J.P., Dahlsten, O.C.O., Vedral, V.: Introducing one-shot work into fluctuation relations. New J. Phys. 17 (2015)Google Scholar
  82. 82.
    Yunger Halpern, N., Garner, A.J.P., Dahlsten, O.C.O., Vedral, V.: What’s the worst that could happen? One-shot dissipated work from R’enyi divergences. ArXiv e-prints (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Quantum Information and MatterCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations