Part of the Food Microbiology and Food Safety book series (FMFS)


Campylobacter jejuni is the leading cause of bacterial gastroenteritis, with C. coli and other species in the genus also increasingly associated with human disease. The extensive animal host and environmental distribution of this infection contributes to the complexity of understanding the sources of human infection and Campylobacter population biology. Questions to which genomic analysis are likely to make early contributions include the basic epidemiology and ecology of this infection, the attribution of human infection to source, and the detection of outbreaks as well as specific features such as virulence determinants. The extensive application of population genetic analysis of partial multilocus genome sequences and some preliminary work with whole genome sequence data support the predicted usefulness of whole genome sequencing for these applications. Extensive sampling across human, food, animal and environmental populations of Campylobacter is needed to allow the effective integration of genomics in the effective study of this pathogen.


Campylobacter Population genetics Food chain Source attribution Outbreak detection 


  1. 1.
    Karmali MA, Fleming PC. Campylobacter enteritis. Can Med Assoc J. 1979;120(12):1525–32.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Gillespie IA, O’Brien SJ, Frost JA, Tam C, Tompkins D, Neal KR, et al. Investigating vomiting and/or bloody diarrhoea in Campylobacter jejuni infection. J Med Microbiol. 2006;55(Pt 6):741–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Skirrow MB, Jones DM, Sutcliffe E, Benjamin J. Campylobacter bacteraemia in England and Wales, 1981–91. Epidemiol Infect. 1993;110(3):567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Skirrow MB, Blaser MJ. Clinical aspects of Campylobacter infection. In: Nachamkin I, Blaser MJ, editors. Campylobacter. Washington, DC: ASM; 2000.Google Scholar
  5. 5.
    Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM. Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum. 2007;37(1):48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Soderlin MK, Kautiainen H, Puolakkainen M, Hedman K, Soderlund-Venermo M, Skogh T, et al. Infections preceding early arthritis in southern Sweden: a prospective population-based study. J Rheumatol. 2003;30(3):459–64.PubMedGoogle Scholar
  7. 7.
    Engberg J, Nachamkin I, Fussing V, McKhann GM, Griffin JW, Piffaretti JC, et al. Absence of clonality of Campylobacter jejuni in serotypes other than HS:19 associated with Guillain-Barré syndrome and gastroenteritis. J Infect Dis. 2001;184(2):215–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Lastovica AJ, Goddard EA, Argent AC. Guillain-Barré syndrome in South Africa associated with Campylobacter jejuni O:41 strains. J Infect Dis. 1997;176 Suppl 2:S139–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Cody AJ, McCarthy NM, Wimalarathna HL, Colles FM, Clark L, Bowler ICJW, et al. A longitudinal 6-year study of the molecular epidemiology of clinical campylobacter isolates in Oxfordshire, United Kingdom. J Clin Microbiol. 2012;50(10):3193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lastovica AJ, Le Roux E. Efficient isolation of Campylobacter upsaliensis from stools. J Clin Microbiol. 2001;39(11):4222–3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011;8(12):669–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Nielsen HL, Ejlertsen T, Engberg J, Nielsen H. High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin Microbiol Infect. 2013;19(5):445–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Lastovica AJ, Le Roux E, Penner JL. “Campylobacter upsaliensis” isolated from blood cultures of pediatric patients. J Clin Microbiol. 1989;27(4):657–9.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Patton CM, Shaffer N, Edmonds P, Barrett TJ, Lambert MA, Baker C, et al. Human disease associated with “Campylobacter upsaliensis” (catalase-negative or weakly positive Campylobacter species) in the United States. J Clin Microbiol. 1989;27(1):66–73.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Trokhymchuk A, Waldner C, Chaban B, Gow S, Hill JE. Prevalence and diversity of Campylobacter species in Saskatchewan retail ground beef. J Food Prot. 2014;77(12):2106–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, et al. Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol. 2001;39(1):14–23.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dingle KE, Colles FM, Falush D, Maiden MC. Sequence typing and comparison of population biology of Campylobacter coli and Campylobacter jejuni. J Clin Microbiol. 2005;43(1):340–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Miller WG, On SL, Wang G, Fontanoz S, Lastovica AJ, Mandrell RE. Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J Clin Microbiol. 2005;43(5):2315–29.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Thompson JS, Cahoon FE, Hodge DS. Rate of Campylobacter spp. isolation in three regions of Ontario, Canada, from 1978 to 1985. J Clin Microbiol. 1986;24(5):876–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lassen J, Kapperud G. Epidemiological aspects of enteritis due to Campylobacter spp. in Norway. J Clin Microbiol. 1984;19(2):153–6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Nylen G, Dunstan F, Palmer SR, Andersson Y, Bager F, Cowden J, et al. The seasonal distribution of Campylobacter infection in nine European countries and New Zealand. Epidemiol Infect. 2002;128(3):383–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kovats RS, Edwards SJ, Charron D, Cowden J, D’Souza RM, Ebi KL, et al. Climate variability and Campylobacter infection: an international study. Int J Biometeorol. 2005;49(4):207–14.PubMedCrossRefGoogle Scholar
  23. 23.
    McCarthy ND, Gillespie IA, Lawson AJ, Richardson J, Neal KR, Hawtin PR, et al. Molecular epidemiology of human Campylobacter jejuni shows association between seasonal and international patterns of disease. Epidemiol Infect. 2012;140:1102–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Batz MB, Doyle MP, Morris Jr G, Painter J, Singh R, Tauxe RV, et al. Attributing illness to food. Emerg Infect Dis. 2005;11(7):993–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Neimann J, Engberg J, Molbak K, Wegener HC. A case-control study of risk factors for sporadic Campylobacter infections in Denmark. Epidemiol Infect. 2003;130(3):353–66.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mullner P, Marshall JC, Spencer SEF, Noble AD, Shadbolt T, Collins-Emerson JM, et al. Utilizing a combination of molecular and spatial tools to assess the effect of a public health intervention. Prev Vet Med. 2011;102(3):242–53.CrossRefGoogle Scholar
  27. 27.
    Sheppard SK, Dallas JF, Strachan NJ, Macrae M, McCarthy ND, Wilson DJ, et al. Campylobacter genotyping to determine the source of human infection. Clin Infect Dis. 2009;48(8):1072–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wilson DJ, Gabriel E, Leatherbarrow AJ, Cheesbrough J, Gee S, Bolton E, et al. Tracing the source of campylobacteriosis. PLoS Genet. 2008;4(9), e1000203.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    McCarthy ND, Colles FM, Dingle KE, Bagnall MC, Manning G, Maiden MC, et al. Host-associated genetic import in Campylobacter jejuni. Emerg Infect Dis. 2007;13(2):267–72.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A. 2013;110(29):11923–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mylius SD, Nauta MJ, Havelaar AH. Cross-contamination during food preparation: a mechanistic model applied to chicken-borne Campylobacter. Risk Anal. 2007;27(4):803–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Frost JA, Gillespie IA, O’Brien SJ. Public health implications of Campylobacter outbreaks in England and Wales, 1995–9: epidemiological and microbiological investigations. Epidemiol Infect. 2002;128(2):111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Friesema IH, Havelaar AH, Westra PP, Wagenaar JA, van Pelt W. Poultry culling and Campylobacteriosis reduction among humans, the Netherlands. Emerg Infect Dis. 2012;18(3):466–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mughini Gras L, Smid JH, Wagenaar JA, de Boer AG, Havelaar AH, Friesema IH, et al. Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis. PLoS One. 2012;7(8), e42599.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mughini Gras L, Smid JH, Wagenaar JA, Koene MG, Havelaar AH, Friesema IH, et al. Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. Epidemiol Infect. 2013;141(12):2526–35.PubMedCrossRefGoogle Scholar
  36. 36.
    Colles FM, McCarthy ND, Sheppard SK, Layton R, Maiden MC. Comparison of Campylobacter populations isolated from a free-range broiler flock before and after slaughter. Int J Food Microbiol. 2010;137:259–64.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytia-Trees E, et al. PulseNet USA: a five-year update. Foodborne Pathog Dis. 2006;3(1):9–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Hedberg CW, Smith KE, Besser JM, Boxrud DJ, Hennessy TW, Bender JB, et al. Limitations of pulsed-field gel electrophoresis for the routine surveillance of Campylobacter infections. J Infect Dis. 2001;184(2):242–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Cody AJ, McCarthy ND, Jansen van Rensburg M, Isinkaye T, Bentley S, Parkhill J, et al. Real-time genomic epidemiology of human Campylobacter isolates using whole genome multilocus sequence typing. J Clin Microbiol. 2013;51:2526–34.Google Scholar
  40. 40.
    Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000;403(6770):665–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Strachan NJ, Rotariu O, Smith-Palmer A, Cowden J, Sheppard SK, O’Brien SJ, et al. Identifying the seasonal origins of human campylobacteriosis. Epidemiol Infect. 2013;141(6):1267–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Meldrum RJ, Griffiths JK, Smith RM, Evans MR. The seasonality of human campylobacter infection and Campylobacter isolates from fresh, retail chicken in Wales. Epidemiol Infect. 2005;133(1):49–52.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hanninen ML, Perko-Makela P, Pitkala A, Rautelin H. A three-year study of Campylobacter jejuni genotypes in humans with domestically acquired infections and in chicken samples from the Helsinki area. J Clin Microbiol. 2000;38(5):1998–2000.PubMedPubMedCentralGoogle Scholar
  44. 44.
    French N, Barrigas M, Brown P, Ribiero P, Williams N, Leatherbarrow H, et al. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ Microbiol. 2005;7(8):1116–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Colles FM, Dingle KE, Cody AJ, Maiden MC. Comparison of Campylobacter populations in wild geese with those in starlings and free-range poultry on the same farm. Appl Environ Microbiol. 2008;74(11):3583–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Colles FM, Ali JS, Sheppard SK, McCarthy ND, Maiden MCJ. Campylobacter populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environ Microbiol Rep. 2011;3(5):574–80.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R, Lawson A, et al. Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol. 2010;76(15):5269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashhurst-Smith C, Olsen B, et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol. 2013;22(5):1463–72.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter AC, et al. Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Infect Genet Evol. 2009;9:1311–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Duim B, Godschalk PC, van den Braak N, Dingle KE, Dijkstra JR, Leyde E, et al. Molecular evidence for dissemination of unique Campylobacter jejuni clones in Curacao, Netherlands Antilles. J Clin Microbiol. 2003;41(12):5593–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dingle KE, Colles FM, Ure R, Wagenaar JA, Duim B, Bolton FJ, et al. Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis. 2002;8(9):949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hald T, Lo Fo Wong DM, Aarestrup FM. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin. Foodborne Pathog Dis. 2007;4(3):313–26.PubMedCrossRefGoogle Scholar
  53. 53.
    Strachan NJC, Gormley FJ, Rotariu O, Ogden ID, Miller G, Dunn GM, et al. Attribution of Campylobacter infections in northeast Scotland to specific sources by use of multilocus sequence typing. J Infect Dis. 2009;199(8):1205–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ragimbeau C, Colin S, Devaux A, Decruyenaere F, Cauchie HM, Losch S, et al. Investigating the host specificity of Campylobacter jejuni and Campylobacter coli by sequencing gyrase subunit A. BMC Microbiol. 2014;14:205.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Smid JH, Mughini Gras L, de Boer AG, French NP, Havelaar AH, Wagenaar JA, et al. Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis. PLoS One. 2013;8(2), e55029.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sheppard SK, Colles FM, McCarthy ND, Strachan NJC, Ogden ID, Forbes KJ, et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol. 2011;20(16):3484–90.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hepworth PJ, Ashelford KE, Hinds J, Gould KA, Witney AA, Williams NJ, et al. Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes. Environ Microbiol. 2011;13(6):1549–60.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Blaser MJ. Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis. 1997;176 Suppl 2:S103–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Pebody RG, Ryan MJ, Wall PG. Outbreaks of Campylobacter infection: rare events for a common pathogen. Commun Dis Rep CDR Rev. 1997;7(3):R33–7.PubMedGoogle Scholar
  60. 60.
    Little CL, Gormley FJ, Rawal N, Richardson JF. A recipe for disaster: outbreaks of campylobacteriosis associated with poultry liver pâté in England and Wales. Epidemiol Infect. 2010;138:1691–4.Google Scholar
  61. 61.
    Tauxe RV, Hargrett-Bean N, Patton CM, Wachsmuth IK. Campylobacter isolates in the United States, 1982–1986. MMWR CDC Surveill Summ. 1988;37(2):1–13.PubMedGoogle Scholar
  62. 62.
    Friedman CR, Neimann J, Wegener HC, Tauxe RV. Epidemiology of Campylobacter jejuni infection in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ, editors. Campylobacter. 2nd ed. Washington, DC: ASM Press; 2000. p. 121–38.Google Scholar
  63. 63.
    Fernandes AM, Balasegaram S, Willis C, Wimalarathna H, Maiden MC, McCarthy ND. Partial failure of milk pasteurisation as a risk for the transmission of Campylobacter from cattle to humans. Clin Infect Dis. 2015;ePub ahead of print. Epub: 13 June 2015.Google Scholar
  64. 64.
    Tauxe RV. Molecular subtyping and the transformation of public health. Foodborne Pathog Dis. 2006;3(1):4–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Alter T, Scherer K. Stress response of Campylobacter spp. and its role in food processing. J Vet Med B Infect Dis Vet Public Health. 2006;53(8):351–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Park SF. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol. 2002;74(3):177–88.PubMedCrossRefGoogle Scholar
  67. 67.
    Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J Infect Dis. 1988;157(3):472–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Nauta MJ, Jacobs-Reitsma WF, Havelaar AH. A risk assessment model for Campylobacter in broiler meat. Risk Anal. 2007;27(4):845–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson DA. Infective dose of Campylobacter jejuni in milk. Br Med J (Clin Res Ed). 1981;282(6276):1584.Google Scholar
  70. 70.
    Werber D, King LA, Muller L, Follin P, Buchholz U, Bernard H, et al. Associations of age and sex with the clinical outcome and incubation period of Shiga toxin-producing Escherichia coli O104:H4 infections, 2011. Am J Epidemiol. 2013;178(6):984–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11(10):728–36.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Farhat MR, Shapiro BJ, Sheppard SK, Colijn C, Murray M. A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens. Genome Med. 2014;6(11):101.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Iraola G, Perez R, Naya H, Paolicchi F, Pastor E, Valenzuela S, et al. Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter. Genome Biol Evol. 2014;6(9):2392–405.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kivisto RI, Kovanen S, Skarp-de Haan A, Schott T, Rahkio M, Rossi M, et al. Evolution and comparative genomics of Campylobacter jejuni ST-677 clonal complex. Genome Biol Evol. 2014;6(9):2424–38.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wu Z, Sahin O, Shen Z, Liu P, Miller WG, Zhang Q. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni. Genome Biol Evol. 2013;5(11):2217–30.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol. 2014;5:782.PubMedGoogle Scholar
  77. 77.
    Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C, Deikus G, et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun. 2015;6:7438.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Salamaszynska-Guz A, Taciak B, Kwiatek A, Klimuszko D. The Cj0588 protein is a Campylobacter jejuni RNA methyltransferase. Biochem Biophys Res Commun. 2014;448(3):298–302.PubMedCrossRefGoogle Scholar
  79. 79.
    Frye JG, Lindsey RL, Meinersmann RJ, Berrang ME, Jackson CR, Englen MD, et al. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis. 2011;8(6):663–79.PubMedCrossRefGoogle Scholar
  80. 80.
    Thakur S, Gebreyes WA. Campylobacter coli in swine production: antimicrobial resistance mechanisms and molecular epidemiology. J Clin Microbiol. 2005;43(11):5705–14.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Wang X, Zhao S, Harbottle H, Tran T, Blickenstaff K, Abbott J, et al. Antimicrobial resistance and molecular subtyping of Campylobacter jejuni and Campylobacter coli from retail meats. J Food Prot. 2011;74(4):616–21.PubMedCrossRefGoogle Scholar
  82. 82.
    Guyard-Nicodeme M, Rivoal K, Houard E, Rose V, Quesne S, Mourand G, et al. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets. Int J Food Microbiol. 2015;203:8–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Olkkola S, Nykasenoja S, Raulo S, Llarena AK, Kovanen S, Kivisto R, et al. Antimicrobial resistance and multilocus sequence types of Finnish Campylobacter jejuni isolates from multiple sources. Zoonoses Public Health. 2015;63:10–9.Google Scholar
  84. 84.
    Wimalarathna HM, Richardson JF, Lawson AJ, Elson R, Meldrum R, Little CL, et al. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages. BMC Microbiol. 2013;13:160.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    D’Lima CB, Miller WG, Mandrell RE, Wright SL, Siletzky RM, Carver DK, et al. Clonal population structure and specific genotypes of multidrug resistant Campylobacter coli from Turkeys. Appl Environ Microbiol. 2007;73:2156–64.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Levesque S, Frost E, Arbeit RD, Michaud S. Multilocus sequence typing of Campylobacter jejuni isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J Clin Microbiol. 2008;46(10):3404–11.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Habib I, Miller WG, Uyttendaele M, Houf K, De Zutter L. Clonal population structure and antimicrobial resistance of Campylobacter jejuni in chicken meat from Belgium. Appl Environ Microbiol. 2009;75(13):4264–72.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo EC, et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother. 2013;68(10):2234–44.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Frickmann H, Schwarz NG, Rakotozandrindrainy R, May J, Hagen RM. PCR for enteric pathogens in high-prevalence settings. What does a positive signal tell us? Infect Dis (Lond). 2015;47(7):491–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Warwick Medical SchoolUniversity of WarwickCoventryUK

Personalised recommendations