Advertisement

Genomic Diversity in Salmonella enterica

Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Salmonella enterica is a bacterial species which contains diversity within the limits of a single species ancestry. Selection by different habitats, represented by the extraordinary number of host species colonised by S. enterica, and the need to successfully transmit through water, soil, or fomites (from host to host) has driven this diversity. An understanding of the impact of this diversity needs to drive the naming of isolates which should be clinically and biologically relevant in terms of niche occupation as well as in terms of ancestry; all we need is an accurate sequence of the entire genome and a comprehensive understanding of the biology of the variation seen. Currently serotype is the working unit of classification but the variation seen within each serotype is itself very variable and so not all serotypes are equal. Here we describe the current genomic data from several common serotypes and discuss the biology behind the different levels of variation.

Keywords

Salmonella enterica Genetic diversity Typing Sequencing technologies Whole genome sequencing 

References

  1. 1.
    Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, Connor TR, Seth-Smith H, Vernikos GS, Robinson KS, Sanders M, Petty NK, Kingsley RA, Baumler AJ, Nuccio SP, Contreras I, Santiviago CA, Maskell D, Barrow P, Humphrey T, Nastasi A, Roberts M, Frankel G, Parkhill J, Dougan G, Thomson NR. Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog. 2011;7, e1002191.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Munch S, Wernery U, Kinne J, Joseph M, Braun P, Pees M, Flieger A, Fruth A, Rabsch W. Comparing the presence of different genes in Salmonella subspecies I–IV and development of a diagnostic multiplex PCR method for identification of Salmonella subspecies. Berl Munch Tierarztl Wochenschr. 2013;126:16–24.PubMedGoogle Scholar
  3. 3.
    Nair S, Wain J, Connell S, de Pinna E, Peters T. Salmonella enterica subspecies II infections in England and Wales—the use of multilocus sequence typing to assist serovar identification. J Med Microbiol. 2014;63:831–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou Z, McCann A, Litrup E, Murphy R, Cormican M, Fanning S, Brown D, Guttman DS, Brisse S, Achtman M. Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona. PLoS Genet. 2013;9, e1003471.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kingsley RA, Baumler AJ. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol. 2000;36:1006–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, Quail MA, Norbertczak H, Walker D, Simmonds M, White B, Bason N, Mungall K, Dougan G, Parkhill J. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genomics. 2009;10:36.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:7–15.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    EFSA. The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. 2007; 130. http://www.efsa.europa.eu/en/scdocs/scdoc/130r.htm.
  9. 9.
    Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 2008;62:53–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Hopkins KL, Peters TM, de Pinna E, Wain J. Standardisation of multilocus variable-number tandem-repeat analysis (MLVA) for subtyping of Salmonella enterica serovar Enteritidis. Euro Surveill. 2011;16:2–12.Google Scholar
  11. 11.
    Wood JD, Chalmers GA, Fenton RA, Pritchard J, Schoonderwoerd M, Lichtenberger WL. Persistent shedding of Salmonella enteritidis from the udder of a cow. Can Vet J. 1991;32:738–41.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Volf J, Stepanova H, Matiasovic J, Kyrova K, Sisak F, Havlickova H, Leva L, Faldyna M, Rychlik I. Salmonella enterica serovar Typhimurium and Enteritidis infection of pigs and cytokine signalling in palatine tonsils. Vet Microbiol. 2012;156:127–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Bartholomew ML, Heffernan RT, Wright JG, Klos RF, Monson T, Khan S, Trees E, Sabol A, Willems RA, Flynn R, Deasy MP, Jones B, Davis JP. Multistate outbreak of Salmonella enterica serotype enteritidis infection associated with pet guinea pigs. Vector Borne Zoonotic Dis. 2014;14:414–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Nauerby B, Pedersen K, Dietz HH, Madsen M. Comparison of Danish isolates of Salmonella enterica serovar enteritidis PT9a and PT11 from hedgehogs (Erinaceus europaeus) and humans by plasmid profiling and pulsed-field gel electrophoresis. J Clin Microbiol. 2000;38:3631–5.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Grzymajlo K, Ugorski M, Kolenda R, Kedzierska A, Kuzminska-Bajor M, Wieliczko A. FimH adhesin from host unrestricted Salmonella Enteritidis binds to different glycoprotein ligands expressed by enterocytes from sheep, pig and cattle than FimH adhesins from host restricted Salmonella Abortus-ovis, Salmonella Choleraesuis and Salmonella Dublin. Vet Microbiol. 2013;166:550–7.PubMedCrossRefGoogle Scholar
  16. 16.
    van Duijkeren E, Wannet WJ, Houwers DJ, van Pelt W. Serotype and phage type distribution of salmonella strains isolated from humans, cattle, pigs, and chickens in the Netherlands from 1984 to 2001. J Clin Microbiol. 2002;40:3980–5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Heilbronn C, Munnoch S, Butler MT, Merritt TD, Durrheim DN. Timeliness of Salmonella Typhimurium notifications after the introduction of routine MLVA typing in NSW. N S W Public Health Bull. 2014;24:159–63.PubMedGoogle Scholar
  18. 18.
    Brown DJ, Baggesen DL, Hansen HB, Hansen HC, Bisgaard M. The characterization of Danish isolates of Salmonella enterica serovar Enteritidis by phage typing and plasmid profiling: 1980–1990. Acta Pathol Microbiol Immunol Scand. 1994;102:208–14.CrossRefGoogle Scholar
  19. 19.
    Peters TM, Berghold C, Brown D, Coia J, Dionisi AM, Echeita A, Fisher IS, Gatto AJ, Gill N, Green J, Gerner-Smidt P, Heck M, Lederer I, Lukinmaa S, Luzzi I, Maguire C, Prager R, Usera M, Siitonen A, Threlfall EJ, Torpdahl M, Tschape H, Wannet W, Zwaluw WK. Relationship of pulsed-field profiles with key phage types of Salmonella enterica serotype Enteritidis in Europe: results of an international multi-centre study. Epidemiol Infect. 2007;135:1274–81.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Boxrud D, Pederson-Gulrud K, Wotton J, Medus C, Lyszkowicz E, Besser J, Bartkus JM. Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol. 2007;45:536–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A, Dougan G, Harrison LH, Brisse S, Group SEMS. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012;8, e1002776.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B, Trees E, Hendriksen RS, Frye JG, Porwollik S, Weimer BC, Wiedmann M, Weinstock GM, Fields PI, McClelland M. Genomic epidemiology of Salmonella enterica serotype Enteritidis based on population structure of prevalent lineages. Emerg Infect Dis. 2014;20:1481–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Winslow CE, Kligler IJ, Rothberg W. Studies on the classification of the Colon-Typhoid Group of Bacteria with special reference to their fermentative reactions. J Bacteriol. 1919;4:429–503.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Sanders M, Whitehead S, Chabalgoity JA, Maskell D, Humphrey T, Roberts M, Barrow PA, Dougan G, Parkhill J. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008;18:1624–37.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, Seth-Smith HM, Barquist L, Stedman A, Humphrey T, Wigley P, Peters SE, Maskell DJ, Corander J, Chabalgoity JA, Barrow P, Parkhill J, Dougan G, Thomson NR. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc Natl Acad Sci U S A. 2015;112:863–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Zheng J, Pettengill J, Strain E, Allard MW, Ahmed R, Zhao S, Brown EW. Genetic diversity and evolution of Salmonella enterica serovar Enteritidis strains with different phage types. J Clin Microbiol. 2014;52:1490–500.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bakker HC, Switt AI, Cummings CA, Hoelzer K, Degoricija L, Rodriguez-Rivera LD, Wright EM, Fang R, Davis M, Root T, Schoonmaker-Bopp D, Musser KA, Villamil E, Waechter H, Kornstein L, Furtado MR, Wiedmann M. A whole-genome single nucleotide polymorphism-based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl Environ Microbiol. 2011;77:8648–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Allard MW, Luo Y, Strain E, Li C, Keys CE, Son I, Stones R, Musser SM, Brown EW. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics. 2012;13:32.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hopkins KL, de Pinna E, Wain J. Prevalence of Salmonella enterica serovar 4,[5],12:i:—in England and Wales, 2010. Euro Surveill. 2012;17(37), pii: 1–16.Google Scholar
  30. 30.
    Sintchenko V, Wang Q, Howard P, Ha CW, Kardamanidis K, Musto J, Gilbert GL. Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA). BMC Infect Dis. 2012;12:78.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wain J, Keddy KH, Hendriksen RS, Rubino S. Using next generation sequencing to tackle non-typhoidal Salmonella infections. J Infect Dev Ctries. 2013;7:1–5.PubMedCrossRefGoogle Scholar
  32. 32.
    EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on monitoring and assessment of the public health risk of “Salmonella Typhimurium-like” strains. EFSA J. 2010;8:1826.CrossRefGoogle Scholar
  33. 33.
    Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. Delineating community outbreaks of Salmonella enterica serovar Typhimurium using whole genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol. 2015;53(4):1063–71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, Wain J, Heyderman RS, Obaro S, Alonso PL, Mandomando I, MacLennan CA, Tapia MD, Levine MM, Tennant SM, Parkhill J, Dougan G. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44:1215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Phan MD, Wain J. IncHI plasmids, a dynamic link between resistance and pathogenicity. J Infect Dev Ctries. 2008;2:272–8.PubMedGoogle Scholar
  36. 36.
    Peters T, Hopkins KL, Lane C, Nair S, Wain J, de Pinna E. Emergence and characterization of Salmonella enterica serovar Typhimurium phage type DT191a. J Clin Microbiol. 2010;48:3375–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bone A, Noel H, Le Hello S, Pihier N, Danan C, Raguenaud ME, Salah S, Bellali H, Vaillant V, Weill FX, Jourdan-da Silva N. Nationwide outbreak of Salmonella enterica serotype 4,12:i:- infections in France, linked to dried pork sausage, March–May 2010. Euro Surveill. 2010;15:2–4.Google Scholar
  38. 38.
    Mossong J, Marques P, Ragimbeau C, Huberty-Krau P, Losch S, Meyer G, Moris G, Strottner C, Rabsch W, Schneider F. Outbreaks of monophasic Salmonella enterica serovar 4,[5],12:i:- in Luxembourg, 2006. Euro Surveill. 2007;12:E11–2.PubMedGoogle Scholar
  39. 39.
    Agasan A, Kornblum J, Williams G, Pratt CC, Fleckenstein P, Wong M, Ramon A. Profile of Salmonella enterica subsp. enterica (subspecies I) serotype 4,5,12:i:- strains causing food-borne infections in New York City. J Clin Microbiol. 2002;40:1924–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Echeita MA, Herrera S, Usera MA. Atypical, fljB-negative Salmonella enterica subsp. enterica strain of serovar 4,5,12:i:- appears to be a monophasic variant of serovar Typhimurium. J Clin Microbiol. 2001;39:2981–3.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Trupschuch S, Laverde Gomez JA, Ediberidze I, Flieger A, Rabsch W. Characterisation of multidrug-resistant Salmonella Typhimurium 4,[5],12:i:- DT193 strains carrying a novel genomic island adjacent to the thrW tRNA locus. Int J Med Microbiol. 2010;300:279–88.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou Z, McCann A, Weill FX, Blin C, Nair S, Wain J, Dougan G, Achtman M. Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever. Proc Natl Acad Sci U S A. 2014;111:12199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? Genome Res. 2007;17:61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, Achtman M. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol. 2002;2:39–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G, Achtman M. Evolutionary history of Salmonella typhi. Science. 2006;314:1301–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wain J, Kidgell C. The emergence of multidrug resistance to antimicrobial agents for the treatment of typhoid fever. Trans R Soc Trop Med Hyg. 2004;98:423–30.PubMedCrossRefGoogle Scholar
  47. 47.
    Butler T, Rumans L, Arnold K. Response of typhoid fever caused by chloramphenicol-susceptible and chloramphenicol-resistant strains of Salmonella typhi to treatment with trimethoprim-sulfamethoxazole. Rev Infect Dis. 1982;4:551–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhutta ZA, Khan IA, Shadmani M. Failure of short-course ceftriaxone chemotherapy for multidrug-resistant typhoid fever in children: a randomized controlled trial in Pakistan. Antimicrob Agents Chemother. 2000;44:450–2.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wain J, Diep TS, Ho VA, Walsh AM, Nguyen TT, Parry CM, White NJ. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol. 1998;36:1683–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Holt KE, Phan MD, Baker S, Duy PT, Nga TV, Nair S, Turner AK, Walsh C, Fanning S, Farrell-Ward S, Dutta S, Kariuki S, Weill FX, Parkhill J, Dougan G, Wain J. Emergence of a globally dominant IncHI1 plasmid type associated with multiple drug resistant typhoid. PLoS Negl Trop Dis. 2011;5, e1245.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O'Grady J. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2014;33(3):296–300.PubMedCrossRefGoogle Scholar
  52. 52.
    Morales CA, Gast R, Guard-Bouldin J. Linkage of avian and reproductive tract tropism with sequence divergence adjacent to the 5S ribosomal subunit rrfH of Salmonella enterica. FEMS Microbiol Lett. 2006;264:48–58.PubMedCrossRefGoogle Scholar
  53. 53.
    Morales CA, Musgrove M, Humphrey TJ, Cates C, Gast R, Guard-Bouldin J. Pathotyping of Salmonella enterica by analysis of single-nucleotide polymorphisms in cyaA and flanking 23S ribosomal sequences. Environ Microbiol. 2007;9:1047–59.PubMedCrossRefGoogle Scholar
  54. 54.
    Leekitcharoenphon P, Lukjancenko O, Friis C, Aarestrup FM, Ussery DW. Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics. 2012;13:88.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lukjancenko O, Ussery D. Design of an Enterobacteriaceae Pan-Genome Microarray Chip. In: Chan J, Ong Y-S, Cho S-B, editors. Computational systems-biology and bioinformatics. Berlin: Springer; 2010. p. 165–79.Google Scholar
  56. 56.
    Snipen L, Ussery DW. Standard operating procedure for computing pangenome trees. Stand Genomic Sci. 2010;2:135–41.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R, Wehnes C, Van Kessel JS, Karns JS, Musser SM, Brown EW. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol Evol. 2013;5:2109–23.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Deane SM, Rawlings DE. Plasmid evolution and interaction between the plasmid addiction stability systems of two related broad-host-range IncQ-like plasmids. J Bacteriol. 2004;186:2123–33.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wain J, Mavrogiorgou E. Next-generation sequencing in clinical microbiology. Expert Rev Mol Diagn. 2013;13:225–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Liao YC, Lin SH, Lin HH. Completing bacterial genome assemblies: strategy and performance comparisons. Sci Rep. 2015;5:8747.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rubino S, Wain J, Gaind R, Paglietti B. A novel broadly applicable PCR-RFLP method for rapid identification and subtyping of H58 Salmonella Typhi. J Microbiol Methods. 2016;127:219–23.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Norwich Medical SchoolUniversity of East AngliaNorwichUK

Personalised recommendations