Multi-Sensor Remote Sensing of Drought from Space

  • M. Sadegh
  • C. Love
  • A. Farahmand
  • A. Mehran
  • M. J. Tourian
  • A. AghaKouchak
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


Drought monitoring is vital considering the immense costs of this natural hazard. The root cause for all types of drought (meteorological, agricultural, hydrological, and socio-economic) is sustained below average precipitation. Since regional precipitation variability depends on large-scale climatic and oceanic circulation patterns, it is necessary to study droughts from a global perspective which requires satellite observations. Satellite data allow comprehensive assessment of drought onset, development, and recovery through a multi-sensor multivariate monitoring of hydrological variables. However, there are major challenges in using satellite data, including consistency, reliability, uncertainty, and length of record that merit more in-depth research.


Normalize Difference Vegetation Index Standardize Precipitation Index Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Snow Water Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by the National Aeronautics and Space Administration (NASA) award NNX15AC27G.


  1. Adegoke JO, Carleton AM (2002) Relations between soil moisture and satellite vegetation indices in the us corn belt. J hydrometeorol 3(4):395–405CrossRefGoogle Scholar
  2. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J hydrometeorol 4(6):1147–1167CrossRefGoogle Scholar
  3. AghaKouchak A (2014) A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 united states drought. Hydrol Earth Syst Sci 18:2485–2492CrossRefGoogle Scholar
  4. AghaKouchak A (2015, A multivariate approach for persistence-based drought prediction: application to the 2010–2011 east Africa drought. J Hydrol 526:127–135. doi:10.1016/j.jhydrol.2014.09.063CrossRefGoogle Scholar
  5. AghaKouchak A, Mehran A (2013) Extended contingency table: performance metrics for satellite observations and climate model simulations. Water Resour Res 49:7144–7149. doi:10.1002/wrcr.20498CrossRefGoogle Scholar
  6. AghaKouchak A, Nakhjiri N (2012) A near real-time satellite-based global drought climate data record. Environ Res Lett 7(4):044,037. doi:10.1088/1748-9326/7/4/044037CrossRefGoogle Scholar
  7. AghaKouchak A, Behrangi A, Sorooshian S, Hsu K, Amitai E (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J Geophys Res-Atmos 116:D02,115CrossRefGoogle Scholar
  8. AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39(9):L09,406CrossRefGoogle Scholar
  9. Aghakouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett 41. doi: 10.1002/2014GL062308Google Scholar
  10. AghaKouchak A, Farahmand A, Melton F, Teixeira J, Anderson M, Wardlow B, Hain C (2015a) Remote sensing of drought: progress, challenges and opportunities. Rev Geophys 53(2):452–480. doi:10.1002/2014RG000456CrossRefGoogle Scholar
  11. AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J (2015b) Recognize anthropogenic drought. Nature 524(7566):409–4011. doi:10.1038/524409aCrossRefGoogle Scholar
  12. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—model. J Irrig Drain Eng 133(4):380–394.CrossRefGoogle Scholar
  13. Ambaw GM (2013) Satellite based remote sensing of soil moisture for drought detection and monitoring in the horn of Africa, Ph.D. Thesis, Politecnico di TorinoGoogle Scholar
  14. Anagnostou EN, Maggioni V, Nikolopoulos EI, Meskele T, Hossain F, Papadopoulos A (2010) Benchmarking high-resolution global satellite rainfall products to radar and rain-gauge rainfall estimates. IEEE Trans Geosci Remote Sens 48(4):1667–1683CrossRefGoogle Scholar
  15. Anderson M, Kustas W (2008) Thermal remote sensing of drought and evapotranspiration. Eos Trans Am Geophys Union 89(26):233CrossRefGoogle Scholar
  16. Anderson L, Malhi Y, Aragao L, Saatchi S (2008) Spatial patterns of the canopy stress during 2005 drought in Amazonia. In: 2007 I.E. international geoscience and remote sensing symposium, IGARSS 2007, pp 2294–2297Google Scholar
  17. Anderson M, Kustas W, Norman J, Hain C, Mecikalski J, Schultz L, Gonzalez-Dugo M, Cammalleri C, d’Urso G, Pimstein A, et al. (2011a) Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol Earth Syst Sci 15(1):223–239Google Scholar
  18. Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011b) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental united states. J Climate 24(8):2025–2044CrossRefGoogle Scholar
  19. Anderson M, Hain C, Wardlow B, Pimstein A, Mecikalski J, Kustas W (2012a) A thermal-based evaporative stress index for monitoring surface moisture depletion. In: Remote sensing of drought: innovative monitoring approaches. CRC, pp 145–167Google Scholar
  20. Anderson W, Zaitchik B, Hain C, Anderson M, Yilmaz M, Mecikalski J, Schultz L (2012b) Towards an integrated soil moisture drought monitor for east Africa. Hydrol Earth Syst Sci 16(8):2893–2913CrossRefGoogle Scholar
  21. Anderson MC, Cammalleri C, Hain CR, Otkin J, Zhan X, Kustas W (2013a) Using a diagnostic soil-plant-atmosphere model for monitoring drought at field to continental scales. Procedia Environ Sci 19:47–56CrossRefGoogle Scholar
  22. Anderson MC, Hain C, Otkin J, Zhan X, Mo K, Svoboda M, Wardlow B, Pimstein A (2013b) An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with us drought monitor classifications. J Hydrometeorol 14(4):1035–1056CrossRefGoogle Scholar
  23. Andreadis KM, Lettenmaier D (2005) Assimilating passive microwave brightness temperature for snow water equivalent estimation. In: AMS annual meeting, 19th conference on hydrologyGoogle Scholar
  24. Arkin PA, Joyce R, Janowiak JE (1994) The estimation of global monthly mean rainfall using infrared satellite data: the goes precipitation index (GPI). Remote Sens Rev 11(1–4):107–124CrossRefGoogle Scholar
  25. Ashouri H, Hsu K-L, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Nelson BR, Prat OP (2015) Persiann-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96(1):69–83CrossRefGoogle Scholar
  26. Asner GP, Alencar A (2010) Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol 187(3):569–578CrossRefGoogle Scholar
  27. Asrar G, Fuchs M, Kanemasu E, Hatfield J (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron J 76(2):300–306CrossRefGoogle Scholar
  28. Asrar G, Myneni RB, Kanemasu ET (1989) Estimation of plant-canopy attributes from spectral reflectance measurementsGoogle Scholar
  29. Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western United States. Water Resour Res 42(8)Google Scholar
  30. Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–17CrossRefGoogle Scholar
  31. Barrett E, Herschy R (1989) Opportunities for satellite remote sensing in hydrology and water management. Geocarto Int 4(2):11–18CrossRefGoogle Scholar
  32. Boken VK, Cracknell AP, Heathcote RL, et al. (2005) Monitoring and predicting agricultural drought: a global study. Oxford University Press, CaryGoogle Scholar
  33. Bolten JD, Crow WT, Zhan X, Jackson TJ, Reynolds CA (2010) Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J Sel Top Appl Earth Observations Remote Sens 3(1):57–66CrossRefGoogle Scholar
  34. Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC (2008) The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. Geosci Remote Sens. 45(1):16–46CrossRefGoogle Scholar
  35. Cashion J, Lakshmi V, Bosch D, Jackson TJ (2005) Microwave remote sensing of soil moisture: evaluation of the TRMM microwave imager (TMI) satellite for the little river watershed Tifton, Georgia. J Hydrol 307(1):242–253CrossRefGoogle Scholar
  36. Chappell A, Renzullo LJ, Raupach TH, Haylock M (2013) Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. J Hydrol 493:105–114CrossRefGoogle Scholar
  37. Chen D, Huang J, Jackson TJ (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from modis near-and short-wave infrared bands. Remote Sens Environ. 98(2):225–236CrossRefGoogle Scholar
  38. Chen J, Wilson C, Tapley B, Yang Z, Niu G (2009) 2005 drought event in the Amazon river basin as measured by grace and estimated by climate models. J Geophys Res 114(B5):B05,404Google Scholar
  39. Choi M, Jacobs J, Anderson M, Bosch D (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476(7):265–273Google Scholar
  40. Dalezios N, Blanta A, Spyropoulos N (2012) Assessment of remotely sensed drought features in vulnerable agriculture. Nat Hazards Earth Syst Sci 12(10):3139–3150CrossRefGoogle Scholar
  41. Damberg L, AghaKouchak A (2014) Global trends and patterns of drought from space. Theor Appl Climatol 117(3):441–448. doi:10.1007/s00704-013-1019-5CrossRefGoogle Scholar
  42. Deering D, Rouse J (1975) Measuring’forage production’ of grazing units from landsat mss data. In: 10 th international symposium on remote sensing of environment, Ann Arbor, Mich, pp 1169–1178Google Scholar
  43. Di L, Rundquist DC, Han L (1994) Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int J Remote Sens 15(10):2121–2136CrossRefGoogle Scholar
  44. D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res Biogeosci 112(G4):2005–2012Google Scholar
  45. Dong J, Walker JP, Houser PR, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res Atmos 112(D7) (1984–2012)Google Scholar
  46. Donohue RJ, McVICAR T, Roderick ML (2009) Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob Chang Biol 15(4):1025–1039CrossRefGoogle Scholar
  47. Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386(1):186–197CrossRefGoogle Scholar
  48. Dorigo W, Scipal K, Parinussa R, Liu Y, Wagner W, De Jeu R, Naeimi V (2010) Error characterisation of global active and passive microwave soil moisture datasets. Hydrol Earth Syst Sci 14(12):2605–2616Google Scholar
  49. Dozier J, Green RO, Nolin AW, Painter TH (2009) Interpretation of snow properties from imaging spectrometry. Remote Sens Environ 113:S25–S37CrossRefGoogle Scholar
  50. Durand M, Kim EJ, Margulis SA (2008) Quantifying uncertainty in modeling snow microwave radiance for a mountain snowpack at the point-scale, including stratigraphic effects. IEEE Trans Geosci Remote Sens 46(6):1753–1767CrossRefGoogle Scholar
  51. Easterling D (2013) Global data sets for analysis of climate extremes. In: Extremes in a changing climate. Springer, Berlin. doi:10.1007/978-94-007-4479-0 1CrossRefGoogle Scholar
  52. Ebert E, Janowiak J, Kidd C (2007) Comparison of near real time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soci 88:47–64CrossRefGoogle Scholar
  53. Entekhabi D, Njoku EG, Houser P, Spencer M, Doiron T, Kim Y, Smith J, Girard R, Belair S, Crow W, et al. (2004) The hydrosphere state (hydros) satellite mission: an earth system pathfinder for global mapping of soil moisture and land freeze/thaw, IEEE Trans Geosci Remote Sens 42(10):2184–2195Google Scholar
  54. Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, et al. (2010a) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716Google Scholar
  55. Entekhabi D, Reichle RH, Koster RD, Crow WT (2010b) Performance metrics for soil moisture retrievals and application requirements. J Hydrometeorol 11(3):832–840CrossRefGoogle Scholar
  56. Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301CrossRefGoogle Scholar
  57. Farahmand A, AghaKouchak A (2015) A generalized framework for deriving nonparametric standardized drought indicators. Adv Water Resour 76:140–145CrossRefGoogle Scholar
  58. Farahmand A, Teixeira J, AghaKouchak A (2015) A vantage from space can detect earlier drought onset: an approach using relative humidity. Sci Rep 5:8553. doi:10.1038/srep07093CrossRefGoogle Scholar
  59. Farrar T, Nicholson S, Lare A (1994) The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. ii. NDVI response to soil moisture. Remote Sens Environ 50(2):121–133CrossRefGoogle Scholar
  60. Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens Environ 101(2):212–229CrossRefGoogle Scholar
  61. Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J, Powell H (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94(2):187–203CrossRefGoogle Scholar
  62. Foster JL, Hall DK, Eylander JB, Riggs GA, Nghiem SV, Tedesco M, Kim E, Montesano PM, Kelly RE, Casey KA, et al. (2011) A blended global snow product using visible, passive microwave and scatterometer satellite data. Int J Remote Sens 32(5):1371–1395Google Scholar
  63. Funk C, Budde ME (2009) Phenologically-tuned modis NDVI-based production anomaly estimates for Zimbabwe. Remote Sens Environ 113(1):115–125CrossRefGoogle Scholar
  64. Gallagher J, Biscoe P, Hunter B (1976) Effects of drought on grain growth. Nature 264:541–542CrossRefGoogle Scholar
  65. Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266CrossRefGoogle Scholar
  66. Gebremichael M (2010) Framework for satellite rainfall product evaluation. Geophysical monograph series, vol 191. Wiley Online Library, pp 265–275Google Scholar
  67. Ghulam A, Qin Q, Zhan Z (2007a) Designing of the perpendicular drought index. Environ Geol 52(6):1045–1052CrossRefGoogle Scholar
  68. Ghulam A, Qin Q, Teyip T, Li Z-L (2007b) Modified perpendicular drought index (MPDI): a real-time drought monitoring method. ISPRS J Photogramm Remote Sens 62(2):150–164CrossRefGoogle Scholar
  69. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818CrossRefGoogle Scholar
  70. Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theor Appl Climatol 119:679–688. doi:10.1007/s00704-014-1139-6CrossRefGoogle Scholar
  71. Goodison BE (1989) Determination of areal snow water equivalent on the Canadian prairies using passive microwave satellite data. In: 1989 international geoscience and remote sensing symposium, 1989. IGARSS’89. 12th Canadian symposium on remote sensing, vol 3. IEEE, pp 1243–1246Google Scholar
  72. Grasso VF, Singh A (2011) Early warning systems: state-of-art analysis and future directions, United Nations Environment Programme (UNEP)Google Scholar
  73. Grody NC, Basist AN (1996) Global identification of snowcover using ssm/i measurements. IEEE Trans Geosci Remote Sens 34(1):237–249CrossRefGoogle Scholar
  74. Gruhier C, De Rosnay P, Hasenauer S, Holmes TR, De Jeu RA, Kerr YH, Mougin E, Njoku E, Timouk F, Wagner W, et al. (2010) Soil moisture active and passive microwave products: intercomparison and evaluation over a Sahelian site, HAL 00463919Google Scholar
  75. Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of modis NDVI and NDWI for grassland drought assessment over the central great plains of the united states. Geophys Res Lett 34(6)Google Scholar
  76. Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP (2008) Evaluation of modis NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys Rese Lett 35(22)Google Scholar
  77. Guan B, Molotch NP, Waliser DE, Jepsen SM, Painter TH, Dozier J (2013) Snow water equivalent in the Sierra Nevada: blending snow sensor observations with snowmelt model simulations. Water Resour Res 49(8):5029–5046CrossRefGoogle Scholar
  78. Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) Modis snow-cover products. Remote Sens Environ 83(1):181–194CrossRefGoogle Scholar
  79. Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Res 57:12–18CrossRefGoogle Scholar
  80. Hao Z, AghaKouchak A (2014) A nonparametric multivariate multi-index drought monitoring framework. J Hydrometeorol 15:89–101CrossRefGoogle Scholar
  81. Hao Z, Singh VP (2015) Drought characterization from a multivariate perspective: a review. J Hydrol 527:668–678CrossRefGoogle Scholar
  82. Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A (2014) Global integrated drought monitoring and prediction system. Sci Data 1:140,001. doi:10.1038/sdata.2014.1CrossRefGoogle Scholar
  83. Hatfield J, Asrar G, Kanemasu E (1984) Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens Environ 14(1):65–75CrossRefGoogle Scholar
  84. Hayes M, Svoboda M, Wilhite D, Vanyarkho O (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteor. Soc. 80:429–438CrossRefGoogle Scholar
  85. He M, Hogue T, Margulis S, Franz K (2012) An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions. Hydrol Earth Syst Sci 16(3):815–831CrossRefGoogle Scholar
  86. Heumann BW (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Progress Phys Geogr 35(1):87–108CrossRefGoogle Scholar
  87. Hidalgo HG (2004) Climate precursors of multidecadal drought variability in the western united states. Water Resour Res 40(12):W12,504CrossRefGoogle Scholar
  88. Hielkema J, Prince S, Astle W (1986) Rainfall and vegetation monitoring in the savanna zone of the Democratic Republic of Sudan using the NOAA advanced very high resolution radiometer. Int J Remote Sens 7(11):1499–1513CrossRefGoogle Scholar
  89. Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 49(5):1044–1051CrossRefGoogle Scholar
  90. Hobbins MT, Dai A, Roderick ML, Farquhar GD (2008) Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys Res Lett 35(12)Google Scholar
  91. Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299(5607):691–694CrossRefGoogle Scholar
  92. Hoerling M., et al. (2013) An interpretation of the origins of the 2012 central great plains drought. Technical Report, Assessment Report, National Oceanic and Atmospheric Administration, Drought Task ForceGoogle Scholar
  93. Hong Y, Hsu K, Gao X, Sorooshian S (2004) Precipitation estimation from remotely sensed imagery using artificial neural network-cloud classification system. J Appl Meteorol Climatol 43:1834–1853CrossRefGoogle Scholar
  94. Hossain F, Anagnostou E (2005) Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture. Adv Water Resour 28(12):1336–1350CrossRefGoogle Scholar
  95. Hossain F, Huffman G (2008) Investigating error metrics for satellite rainfall data at hydrologically relevant scales. J Hydrometeorol 9(3):563–575CrossRefGoogle Scholar
  96. Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (grace) terrestrial water storage observations. Water Resour Res 48(7)Google Scholar
  97. Hsu K, Gao X, Sorooshian S, Gupta H (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36:1176–1190CrossRefGoogle Scholar
  98. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309CrossRefGoogle Scholar
  99. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG, (2002) Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens Environ 83(1):195–213CrossRefGoogle Scholar
  100. Huffman G, Adler R, Bolvin D, Gu G, Nelkin E, Bowman K, Stocker E, Wolff D (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J hydrometeorol 8:38–55CrossRefGoogle Scholar
  101. Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo S-H (2013) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In: Algorithm Theoretical Basis Document, Version 4.1, NASAGoogle Scholar
  102. Hunt Jr, ER, Rock BN (1989) Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens Environ 30(1):43–54Google Scholar
  103. Idso S, Jackson R, Pinter P, Reginato R, Hatfield J (1981) Normalizing the stress-degree-day parameter for environmental variability. Agric Meteorol 24(1):45–55CrossRefGoogle Scholar
  104. Jackson TJ (1993) III. measuring surface soil moisture using passive microwave remote sensing. Hydrol Process 7(2):139–152CrossRefGoogle Scholar
  105. Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484CrossRefGoogle Scholar
  106. Jackson RD, Idso S, Reginato R, Pinter Jr P (1981) Canopy temperature as a crop water stress indicator. Water Resour Res 17(4):1133–1138Google Scholar
  107. Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt E (2004) Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92(4):475–482CrossRefGoogle Scholar
  108. Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98CrossRefGoogle Scholar
  109. Joyce R, Arkin PA (1997) Improved estimates of tropical and subtropical precipitation using the goes precipitation index. J Atmos Ocean Technol 14(5):997–1011CrossRefGoogle Scholar
  110. Joyce R, Janowiak J, Arkin P, Xie P (2004) Cmorph: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503CrossRefGoogle Scholar
  111. Justice CO, Román MO, Csiszar I, Vermote EF, Wolfe RE, Hook SJ, Friedl M, Wang Z, Schaaf CB, Miura T, et al. (2013) Land and cryosphere products from Suomi NPP VIIRS: overview and status. J Geophys Res Atmos 118(17):9753–9765Google Scholar
  112. Kao S, Govindaraju R (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1–2):121–134CrossRefGoogle Scholar
  113. Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Climate 23(3):618–633CrossRefGoogle Scholar
  114. Kelly RE, Chang AT, Tsang L, Foster JL (2003) A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans Geosci Remote Sens 41(2):230–242CrossRefGoogle Scholar
  115. Keyantash J, Dracup J (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res 40(9):W09,304. doi:10.1029/2003WR002610CrossRefGoogle Scholar
  116. Kidd C (2001) Satellite rainfall climatology: a review. Int J Climatol 21:1041–1066CrossRefGoogle Scholar
  117. Kim J, Hogue TS (2012) Improving spatial soil moisture representation through integration of AMSR-E and modis products. IEEE Trans Geosci Remote Sens 50(2):446–460CrossRefGoogle Scholar
  118. Kogan F (1995) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100CrossRefGoogle Scholar
  119. Kogan F, Sullivan J (1993) Development of global drought-watch system using NOAA/AVHRR data. Adv Space Res 13(5):219–222CrossRefGoogle Scholar
  120. Kongoli C, Dean CA, Helfrich SR, Ferraro RR (2007) Evaluating the potential of a blended passive microwave-interactive multi-sensor product for improved mapping of snow cover and estimations of snow water equivalent. Hydrol Process 21(12):1597–1607CrossRefGoogle Scholar
  121. Kongoli C, Romanov P, Ferraro R (2012) Snow cover monitoring from remote sensing satellites. In: Remote sensing of drought: innovative monitoring approaches. CRC, Boca Raton, pp 359–386Google Scholar
  122. Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model: 1. model structure. J Geophys Res Atmos (1984–2012) 105(D20):24,809–24,822CrossRefGoogle Scholar
  123. Krajewski WF, Anderson MC, Eichinger WE, Entekhabi D, Hornbuckle BK, Houser PR, Katul GG, Kustas WP, Norman JM, Peters-Lidard C, et al. (2006) A remote sensing observatory for hydrologic sciences: a genesis for scaling to continental hydrology. Water Resour Res 42(7)Google Scholar
  124. Kubota T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Takayabu YN, Ushio T, Nakagawa K, Iwanami K, et al. (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. IEEE Trans Geosci Remote Sens 45(7):2259–2275Google Scholar
  125. Kummerow C, Olson WS, Giglio L (1996) A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans Geosci Remote Sens 34(5):1213–1232CrossRefGoogle Scholar
  126. Kummerow C, Hong Y, Olson W, Yang S, Adler R, McCollum J, Ferraro R, Petty G, Shin D-B, Wilheit T (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40(11):1801–1820CrossRefGoogle Scholar
  127. Kunzi KF, Patil S, Rott H (1982) Snow-cover parameters retrieved from nimbus-7 scanning multichannel microwave radiometer (SMMR) data. IEEE Trans Geosci Remote Sens GE-20(4):452–467CrossRefGoogle Scholar
  128. Leblanc MJ, Tregoning P, Ramillien G, Tweed SO, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45(4)Google Scholar
  129. Levizzani V (2008) Satellite clouds and precipitation observations for meteorology and climate. In: Sorooshian S, Hsu K-L, Coppola E, Tomassetti B, Verdecchia M, Visconti G (eds) Hydrological modeling and the water cycle. Springer, Berlin, pp 49–68CrossRefGoogle Scholar
  130. Levizzani V, Bauer P, Turk F (2007) Measurement of Precipitation from space: EURAINSAT and future. Springer, DordrechtCrossRefGoogle Scholar
  131. Li B, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of grace terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446:103–115CrossRefGoogle Scholar
  132. Liang T, Zhang X, Xie H, Wu C, Feng Q, Huang X, Chen Q (2008) Toward improved daily snow cover mapping with advanced combination of modis and AMSR-E measurements. Remote Sens Environ 112(10):3750–3761CrossRefGoogle Scholar
  133. Liu Y, Parinussa R, Dorigo W, Jeu RD, Wagner W, Dijk AV, McCabe M, Evans J (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15(2):425–436CrossRefGoogle Scholar
  134. Liu X, Zhu X, Pan Y, Li S, Liu Y, Ma Y (2016) Agricultural drought monitoring: progress, challenges, and prospects. J Geogr Sci 26(6):750–767CrossRefGoogle Scholar
  135. Long D, Scanlon BR, Longuevergne L, Sun A-Y, Fernando DN, Himanshu S (2013) Grace satellites monitor large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40(13):3395–3401Google Scholar
  136. Lorenz C, Tourian MJ, Devaraju B, Sneeuw N, Kunstmann H (2015) Basin-scale runoff prediction: An ensemble Kalman filter framework based on global hydrometeorological data sets. Water Resour Res 51(10):8450–8475CrossRefGoogle Scholar
  137. Lu H, Raupach MR, McVicar TR, Barrett DJ (2003) Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens Environ 86(1):1–18CrossRefGoogle Scholar
  138. Maggioni V, Sapiano MR, Adler RF (2016) Estimating uncertainties in high-resolution satellite precipitation products: systematic or random error? J Hydrometeorol 17(4):1119–1129CrossRefGoogle Scholar
  139. Margulis SA, Wood EF, Troch PA (2006) The terrestrial water cycle: modeling and data assimilation across catchment scales. J Hydrometeorol 7(3):309–311CrossRefGoogle Scholar
  140. McCabe GJ, Clark MP (2005) Trends and variability in snowmelt runoff in the western united states. J Hydrometeorol 6(4):476–482CrossRefGoogle Scholar
  141. McKee T, Doesken N, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: In proceedings of the 8th conference of applied climatology, 17–22 January 1993, Anaheim, CA. American Meteorological Society, pp 179–184Google Scholar
  142. McVicar TR, Jupp DL (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric Syst 57(3):399–468CrossRefGoogle Scholar
  143. McVicar TR, Jupp DL (1999) Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models. Agric Forest Meteorol 96(4):219–238CrossRefGoogle Scholar
  144. McVicar TR, Jupp DL (2002) Using covariates to spatially interpolate moisture availability in the Murray–darling basin: a novel use of remotely sensed data. Remote Sens Environ 79(2):199–212CrossRefGoogle Scholar
  145. McVicar TR, Roderick ML, Donohue RJ, Li LT, Van Niel TG, Thomas A, Grieser J, Jhajharia D, Himri Y, Mahowald NM, et al. (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205Google Scholar
  146. Mehran A, AghaKouchak A (2014) Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol Process 28:2262–2270. doi:10.1002/hyp.9779CrossRefGoogle Scholar
  147. Mehran A, Mazdiyasni O, AghaKouchak A (2015) A hybrid framework for assessing socioeconomic drought: linking climate variability, local resilience, and demand. J Geophys Res 121. doi:10.1002/2015JD023147Google Scholar
  148. Mo KC (2011) Drought onset and recovery over the United States. J Geophys Res Atmos 116:D20,106. doi:10.1029/2011JD016168CrossRefGoogle Scholar
  149. Molotch NP, Bales RC (2006) Comparison of ground-based and airborne snow surface albedo parameterizations in an alpine watershed: impact on snowpack mass balance. Water Resour Res 42(5)Google Scholar
  150. Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv Water Resour 31(11):1503–1514CrossRefGoogle Scholar
  151. Moran M, Clarke T, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens Environ 49(3):246–263CrossRefGoogle Scholar
  152. Morgan J (1989) Satellite remote sensing in meteorology and climatology-status, perspectives and challenges. In: Deutsche Meteorologen-Tagung ueber Atmosphaere, Ozeane, Kontinente, Kiel, Federal Republic of Germany, May 16–19. Annalen der Meteorologie, vol 26, pp 39–43Google Scholar
  153. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on modis and global meteorology data. Remote Sens Environ 111(4):519–536CrossRefGoogle Scholar
  154. Mu Q, Jones LA, Kimball JS, McDonald KC, Running SW (2009) Satellite assessment of land surface evapotranspiration for the pan-arctic domain. Water Resour Res 45(9)Google Scholar
  155. Mu Q, Zhao M, Running SW (2011) Improvements to a modis global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800CrossRefGoogle Scholar
  156. Mu Q, Zhao M, Kimball JS, McDowell NG, Running SW (2013) A remotely sensed global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98CrossRefGoogle Scholar
  157. NASA (2010) 2010 science plan for NASA’s science mission directorate. Technical Report, National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  158. Nemani R, Hashimoto H, Votava P, Melton F, Wang W, Michaelis A, Mutch L, Milesi C, Hiatt S, White M (2009) Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (tops). Remote Sens Environ 113(7):1497–1509CrossRefGoogle Scholar
  159. Nguyen P, Thorstensen A, Sorooshian S, Hsu K, AghaKouchak A (2015) Flood forecasting and inundation mapping using HiResFlood-UCI and near real-time satellite precipitation data: the 2008 Iowa flood. J Hydrometeorol (16):1171–1183CrossRefGoogle Scholar
  160. Nicholson SE, Tucker CJ, Ba M (1998) Desertification, drought, and surface vegetation: an example from the west African Sahel. Bull Am Meteorol Soc 79(5):815–829CrossRefGoogle Scholar
  161. Njoku EG, Entekhabi D (1996) Passive microwave remote sensing of soil moisture. J Hydrol 184(1):101–129CrossRefGoogle Scholar
  162. Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41(2):215–229CrossRefGoogle Scholar
  163. Otkin JA, Anderson MC, Hain C, Svoboda M (2014) Examining the relationship between drought development and rapid changes in the evaporative stress index. J Hydrometeorol 15(3):938–956Google Scholar
  164. Painter TH, Seidel FC, Bryant AC, McKenzie Skiles S, Rittger K (2013) Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J Geophys Res Atmos 118(17):9511–9523Google Scholar
  165. Palmer W (1965) Meteorological drought. Technical Report, Weather Bureau Res. Paper 45, U.S. Dept. of Commerce, 58 ppGoogle Scholar
  166. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21(4)Google Scholar
  167. Palmer WC, Havens AV (1958) A graphical technique for determining evapotranspiration by the Thornthwaite method. Mon Weather Rev 86(4):123–128CrossRefGoogle Scholar
  168. Paridal BR, Collado WB, Borah R, Hazarika MK, Sarnarakoon L (2008) Detecting drought-prone areas of rice agriculture using a modis-derived soil moisture index. GISci Remote Sens 45(1):109–129CrossRefGoogle Scholar
  169. Park J-S, Kim K-T, Choi Y-S (2008) Application of vegetation condition index and standardized vegetation index for assessment of spring drought in south Korea. In: IEEE international geoscience and remote sensing symposium, 2008 (IGARSS 2008), vol 3. IEEE, pp III–774Google Scholar
  170. Payero J, Neale C, Wright J (2004) Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Appl Eng Agric 20:385–393CrossRefGoogle Scholar
  171. Perry CR, Lautenschlager LF (1984) Functional equivalence of spectral vegetation indices. Remote Sens Environ 14(1):169–182CrossRefGoogle Scholar
  172. Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Remote Sens 68(1):71–75Google Scholar
  173. Pinker RT, Sun D, Hung M-P, Li C, Basara JB (2009) Evaluation of satellite estimates of land surface temperature from GOES over the United States. J Appl Meteorol Climatol 48(1):167–180CrossRefGoogle Scholar
  174. Prakash S, Mitra AK, AghaKouchak A, Pai D (2015) Error characterization of TRMM multisatellite precipitation analysis (TMPA-3b42) products over India for different seasons. J Hydrol 529:1302–1312CrossRefGoogle Scholar
  175. Prakash S, Mitra AK, Pai D, AghaKouchak A (2016a) From TRMM to GPM: how well can heavy rainfall be detected from space? Adv Water Resour 88:1–7CrossRefGoogle Scholar
  176. Prakash S, Mitra AK, AghaKouchak A, Liu Z, Norouzi H, Pai D (2016b) A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J Hydrol. doi:10.1016/j.jhydrol.2016.01.029Google Scholar
  177. Price JC (1982) Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data. IEEE Trans Geosci Remote Sens GE-20(3):286–292CrossRefGoogle Scholar
  178. Prince SD, Colstoun D, Brown E, Kravitz L (1998) Evidence from rain-use efficiencies does not indicate extensive Sahelian desertification. Glob Chang Biol 4(4):359–374CrossRefGoogle Scholar
  179. Qin Q, Jin C, Zhang N, Yang X (2010) An two-dimensional spectral space based model for drought monitoring and its re-examination. In: 2010 I.E. international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3869–3872Google Scholar
  180. Rajsekhar D, Singh VP, Mishra AK (2014) Multivariate drought index: an information theory based approach for integrated drought assessment. J Hydrol. doi:10.1016/j.jhydrol.2014.11.031Google Scholar
  181. Rasmusson EM, Wallace JM, et al. (1983) Meteorological aspects of the el nino/southern oscillation. Science 222(4629):1195–1202Google Scholar
  182. Reager JT, Thomas AC, Sproles EA, Rodell M, Beaudoing HK, Li B, Famiglietti JS (2015) Assimilation of grace terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens 7(11):14,663. doi:10.3390/rs71114663CrossRefGoogle Scholar
  183. Reichle RH, Koster RD, Dong J, Berg AA (2004) Global soil moisture from satellite observations, land surface models, and ground data: implications for data assimilation. J Hydrometeorol 5(3):430–442CrossRefGoogle Scholar
  184. Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887CrossRefGoogle Scholar
  185. Richard Y, Poccard I (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in southern Africa. Int J Remote Sens 19(15):2907–2920CrossRefGoogle Scholar
  186. Rodell M (2012) Satellite gravimetry applied to drought monitoring. In: Remote Sensing of Drought: Innovative Monitoring Approaches. CRC, p 261Google Scholar
  187. Rodell M, Famiglietti J (2002) The potential for satellite-based monitoring of groundwater storage changes using grace: the high plains aquifer, central US. J Hydrol 263(1):245–256CrossRefGoogle Scholar
  188. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi river basin (USA) using grace. Hydrogeol J 15(1):159–166CrossRefGoogle Scholar
  189. Roderick ML, Noble IR, Cridland SW (1999) Estimating woody and herbaceous vegetation cover from time series satellite observations. Glob Ecol Biogeogr 8(6):501–508CrossRefGoogle Scholar
  190. Romanov P, Gutman G, Csiszar I (2000) Automated monitoring of snow cover over north America with multispectral satellite data. J Appl Meteorol 39(11):1866–1880CrossRefGoogle Scholar
  191. Rott H, Yueh SH, Cline DW, Duguay C, Essery R, Haas C, Heliere F, Kern M, Macelloni G, Malnes E, et al. (2010) Cold regions hydrology high-resolution observatory for snow and cold land processes. Proc IEEE 98(5):752–765Google Scholar
  192. Rouse J, Haas R, Schell J, Deering D, Harlan J (1974) Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Texas A & M University, Remote Sensing Center, College StationGoogle Scholar
  193. Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:(4)1090–1101Google Scholar
  194. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560CrossRefGoogle Scholar
  195. Schanda E, Matzler C, Kunzi K (1983) Microwave remote sensing of snow cover. Int J Remote Sens 4(1):149–158CrossRefGoogle Scholar
  196. Senay GB, Bohms S, Verdin JP (2012) Remote sensing of evapotranspiration for operational drought monitoring using principles of water and energy balance. In: Wardlow BD, Anderson MC, Verdin JP (eds) Remote sensing of drought: innovative monitoring approaches. CRC, pp 123–144Google Scholar
  197. Sheffield J, Goteti G, Wen F, Wood E (2004) A simulated soil moisture based drought analysis for the United States. J Geophys Res Atmos 109:D24CrossRefGoogle Scholar
  198. Sheffield J, Goteti G, Wood E (2006) Development of a 50-yr, high resolution global dataset of meteorological forcings for land surface modeling. J. Climate 13:3088–3111CrossRefGoogle Scholar
  199. Sheffield J, Wood E, Roderick M (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438CrossRefGoogle Scholar
  200. Shen HW, Tabios GQ (1996) Modeling of precipitation-based drought characteristics over California. Centers for Water and Wildland Resources, DavisGoogle Scholar
  201. Silleos NG, Alexandridis TK, Gitas IZ, Perakis K (2006) Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int 21(4):21–28CrossRefGoogle Scholar
  202. Simpson J, Stitt J, Sienko M (1998) Improved estimates of the areal extent of snow cover from AVHRR data. J Hydrol 204(1):1–23CrossRefGoogle Scholar
  203. Sorooshian S, Hsu K, Gao X, Gupta H, Imam B, Braithwaite D (2000) Evolution of the Persiann system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046CrossRefGoogle Scholar
  204. Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx JMH, Imam B, Kuligowski R, Skahill B, Skofronick-Jackson G (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bull Am Meteorol Soc 92(10):1353–1357CrossRefGoogle Scholar
  205. Sorooshian S, Nguyen P, Sellars S, Braithwaite D, AghaKouchak A, Hsu K (2014) Satellite-based remote sensing estimation of precipitation for early warning systems. Extreme Nat Hazards Disaster Risks Soc Implications 1:99–112CrossRefGoogle Scholar
  206. Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Stephens S (2002) The drought monitor. Bull Am Meteorol Soc 83(8):1181–1190CrossRefGoogle Scholar
  207. Tadesse T, Brown J, Hayes M (2005) A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the US central plains. ISPRS J Photogramm Remote Sens 59(4):244–253; 30th international symposium on remote sensing of environment, Honolulu, HI, 2003Google Scholar
  208. Takada M, Mishima Y, Natsume S (2009) Estimation of surface soil properties in peatland using ALOS/PALSAR. Landsc Ecol Eng 5(1):45–58CrossRefGoogle Scholar
  209. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9)Google Scholar
  210. Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A grace-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41(5):1537–1545CrossRefGoogle Scholar
  211. Tian Y, Peters-Lidard C, Eylander J, Joyce R, Huffman G, Adler R, Hsu K, Turk F, Garcia M, Zeng J (2009) Component analysis of errors in satellite-based precipitation estimates. J Geophys Res 114:D24101CrossRefGoogle Scholar
  212. Tourian M, Elmi O, Chen Q, Devaraju B, Roohi S, Sneeuw N (2015) A spaceborne multisensor approach to monitor the desiccation of lake Urmia in Iran. Remote Sens Environ 156:349–360CrossRefGoogle Scholar
  213. Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. Eur Water 9(10):3–11Google Scholar
  214. Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833CrossRefGoogle Scholar
  215. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150CrossRefGoogle Scholar
  216. Tucker CJ, Choudhury BJ (1987) Satellite remote sensing of drought conditions. Remote Sens Environ 23(2):243–251CrossRefGoogle Scholar
  217. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int J Remote Sens 26(20):4485–4498Google Scholar
  218. Turk FJ, Rohaly GD, Hawkins J, Smith EA, Marzano FS, Mugnai A, Levizzani V (1999) Meteorological applications of precipitation estimation from combined ssm/i, TRMM and infrared geostationary satellite data. In: Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere. VSP International Science Publishers, pp 353–363Google Scholar
  219. UNESCO (1979) Map of the world distribution of arid regions. Technical Report, The United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, FranceGoogle Scholar
  220. van Dijk A, Renzullo L, Rodell M (2011) Use of gravity recovery and climate experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system. Water Resour Res 47(11)Google Scholar
  221. van Dijk AI, Beck HE, Crosbie RS, Jeu RA, Liu YY, Podger GM, Timbal B, Viney NR (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057CrossRefGoogle Scholar
  222. Van Loon AF (2015) Hydrological drought explained. Wiley Interdiscip Rev Water 2(4):359–392Google Scholar
  223. Van Loon AF, Gleeson T, Clark J, Van Dijk AI, Stahl K, Hannaford J, Di Baldassarre G, Teuling AJ, Tallaksen LM, Uijlenhoet R, et al. (2016) Drought in the anthropocene. Nat Geosci 9(2):89–91Google Scholar
  224. Vargas M, Miura T, Shabanov N, Kato A (2013) An initial assessment of Suomi NPP VIIRS vegetation index EDR. J Geophys Res Atmos 118(22):12–301CrossRefGoogle Scholar
  225. Wagner W, Noll J, Borgeaud M, Rott H (1999) Monitoring soil moisture over the Canadian prairies with the ERS scatterometer. IEEE Trans Geosci Remote Sens 37(1):206–216CrossRefGoogle Scholar
  226. Wagner W, Dorigo W, de Jeu R, Fernandez D, Benveniste J, Haas E, Ertl M (2012) Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. In: XXII ISPRS congress, Melbourne, AustraliaGoogle Scholar
  227. Wan Z, Wang P, Li X (2004) Using modis land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains, USA. Int J Remote Sens 25(1):61–72CrossRefGoogle Scholar
  228. Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50(2)Google Scholar
  229. Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(20)Google Scholar
  230. Wang L, Qu JJ (2009) Satellite remote sensing applications for surface soil moisture monitoring: a review. Front Earth Sci Chin 3(2):237–247CrossRefGoogle Scholar
  231. Wang A, Bohn TJ, Mahanama SP, Koster RD, Lettenmaier DP (2009) Multimodel ensemble reconstruction of drought over the continental United States. J Climate 22(10):2694–2712CrossRefGoogle Scholar
  232. Wang J, Price K, Rich P (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central great plains. Int J Remote Sens 22(18):3827–3844CrossRefGoogle Scholar
  233. Wardlow B, Anderson M, Verdin J (2012) Remote sensing of drought. CRC, Boca RatonGoogle Scholar
  234. Wegren SK (2011) Food security and Russia’s 2010 drought. Eurasian Geogr Econ 52(1):140–156CrossRefGoogle Scholar
  235. Welsch C, Swenson H, Cota SA, DeLuccia F, Haas JM, Schueler C, Durham RM, Clement JE, Ardanuy PE (2001) VIIRS (visible infrared imager radiometer suite): a next-generation operational environmental sensor for NPOESS. In: IEEE 2001 international geoscience and remote sensing symposium, 2001. IGARSS’01, vol. 3. IEEE, pp 1020–1022Google Scholar
  236. Werick W, Willeke G, Guttman N, Hosking J, Wallis J (1994) National drought atlas developed. Eos Trans Am Geophys Union 75:89CrossRefGoogle Scholar
  237. Whitcraft AK, Becker-Reshef I, Justice CO (2015) A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sens 7(2):1461–1481CrossRefGoogle Scholar
  238. Wiegand C, Richardson A, Escobar D, Gerbermann A (1991) Vegetation indices in crop assessments. Remote Sens Environ 35(2):105–119CrossRefGoogle Scholar
  239. Wiesnet D (1981) Winter snow drought. Eos Trans Am Geophys Union 62(14):137–137CrossRefGoogle Scholar
  240. Wilhite DA (2005) Drought and water crises: science, technology, and management issues, vol 86. CRC, Boca RatonCrossRefGoogle Scholar
  241. Wilson WJ, Yueh SH, Dinardo SJ, Chazanoff SL, Kitiyakara A, Li FK, Rahmat-Samii Y (2001) Passive active l-and s-band (pals) microwave sensor for ocean salinity and soil moisture measurements. IEEE Trans Geosci Remote Sens 39(5):1039–1048CrossRefGoogle Scholar
  242. Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. i: Pure snow. J Atmos Sci 37(12):2712–2733CrossRefGoogle Scholar
  243. Wood A, Lettenmaier D (2008) An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys Res Lett 35(14)Google Scholar
  244. Yao Y, Liang S, Qin Q, Wang K (2010) Monitoring drought over the conterminous united states using modis and NCEP reanalysis-2 data. J Appl Meteorol Climatol 49(8):1665–1680CrossRefGoogle Scholar
  245. Yao Y, Liang S, Qin Q, Wang K, Zhao S (2011) Monitoring global land surface drought based on a hybrid evapotranspiration model. Int J Appl Earth Obs Geoinf 13(3):447–457CrossRefGoogle Scholar
  246. Yin D, Roderick ML, Leech G, Sun F, Huang Y (2014) The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett 41(22):7891–7897CrossRefGoogle Scholar
  247. Yirdaw SZ, Snelgrove KR, Agboma CO (2008) Grace satellite observations of terrestrial moisture changes for drought characterization in the Canadian prairie. J Hydrol 356(1):84–92CrossRefGoogle Scholar
  248. Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of grace terrestrial water storage data into a land surface model: results for the Mississippi river basin. J Hydrometeorol 9(3):535–548CrossRefGoogle Scholar
  249. Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23CrossRefGoogle Scholar
  250. Zhang N, Hong Y, Qin Q, Liu L (2013) VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int J Remote Sens 34(13):4585–4609CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M. Sadegh
    • 1
  • C. Love
    • 1
  • A. Farahmand
    • 1
  • A. Mehran
    • 1
    • 2
  • M. J. Tourian
    • 3
  • A. AghaKouchak
    • 1
  1. 1.University of CaliforniaIrvineUSA
  2. 2.University of CaliforniaCAUSA
  3. 3.University of StuttgartStuttgartGermany

Personalised recommendations