Further Improvement in Approximating the Maximum Duo-Preservation String Mapping Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9838)

Abstract

We present an improved approximation for the Maximum Duo-Preservation String Mapping Problem (MPSM). This problem was introduced in [7] as the complement to the well-studied Minimum Common String Partition problem (MCSP). Prior work also considers the k-MPSM and k-MCSP variants in which each letter occurs at most k times. The authors of [7] showed a \(k^2\)-appoximation for \(k \ge 3\) and 2-approximation for \(k = 2\). A 4-approximation independent of k was shown in [4]. In [4], they also showed that k-MPSM is APX-Hard and achieved approximation ratios of 8 / 5 for \(k = 2\) and 3 for \(k = 3\). In this paper, we show an algorithm which achieves a 13 / 4-approximation for the general MPSM problem using a new combinatorial triplet matching approach. During publication of this paper, [3] presented a local search algorithm yielding 7 / 2, which falls in between the previous best and this paper. The remainder of the paper has not been altered to reflect this.

Keywords

String algorithms Polynomial-time approximation Max Duo-Preservation String Mapping Problem Min Common String Partition Problem 

References

  1. 1.
    Beretta, S., Castelli, M., Dondi, R.: Parameterized tractability of the maximum-duo preservation string mapping problem. CoRR abs/1512.03220 (2015). http://arxiv.org/abs/1512.03220
  2. 2.
    Blum, C., Lozano, J.A., Davidson, P.: Mathematical programming strategies for solving the minimum common string partition problem. Eur. J. Oper. Res. 242(3), 769–777 (2015). http://www.sciencedirect.com/science/article/pii/S0377221714008716 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boria, N., Cabodi, G., Camurati, P., Palena, M., Pasini, P., Quer, S.: A 7/2-approximation algorithm for the maximum duo-preservation string mapping problem. In: Grossi, R., Lewenstein, M. (eds.) CPM 2016. LIPIcs, vol. 54, pp. 11:1–11:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2016). http://dx.doi.org/10.4230/LIPIcs.CPM.2016.11 Google Scholar
  4. 4.
    Boria, N., Kurpisz, A., Leppänen, S., Mastrolilli, M.: Improved approximation for the maximum duo-preservation string mapping problem. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 14–25. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Bulteau, L., Fertin, G., Komusiewicz, C., Rusu, I.: A Fixed-parameter algorithm for minimum common string partition with few duplications. In: Darling, A., Stoye, J. (eds.) WABI 2013. LNCS, vol. 8126, pp. 244–258. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Bulteau, L., Komusiewicz, C.: Minimum common string partition parameterized by partition size is fixed-parameter tractable, Chap. 8, pp. 102–121 (2014). http://epubs.siam.org/doi/abs/10.1137/1.9781611973402.8
  7. 7.
    Chen, W., Chen, Z., Samatova, N.F., Peng, L., Wang, J., Tang, M.: Solving the maximum duo-preservation string mapping problem with linear programming. Theoret. Comput. Sci. 530, 1–11 (2014). http://www.sciencedirect.com/science/article/pii/S0304397514001108 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(4), 302–315 (2005)CrossRefGoogle Scholar
  9. 9.
    Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. ACM Trans. Algorithms 3(1), 2:1–2:19 (2007). http://doi.acm.org/10.1145/1186810.1186812 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Damaschke, P.: Minimum common string partition parameterized. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Ferdous, S.M., Rahman, M.S.: Solving the minimum common string partition problem with the help of ants. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013, Part I. LNCS, vol. 7928, pp. 306–313. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Ferdous, S.M., Rahman, M.S.: An integer programming formulation of the minimum common string partition problem. PLoS ONE 10(7), 1–16 (2015)CrossRefGoogle Scholar
  14. 14.
    Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 484–495. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited. J. Comb. Optim. 23(4), 519–527 (2012). http://dx.doi.org/10.1007/s10878-010-9370-2 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kolman, P., Waleń, T.: Approximating reversal distance for strings with bounded number of duplicates. Disc. Appl. Math. 155(3), 327–336 (2007). http://www.sciencedirect.com/science/article/pii/S0166218X0600309X MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Swenson, K.M., Marron, M., Earnest-deyoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. In: Proceedings of 7th SIAM Workshop on Algorithm Engineering and Experiments (ALENEX 2005), p. 121. SIAM Press (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Maryland–College ParkCollege ParkUSA

Personalised recommendations